Regression on Manifolds with Implications for System Identification

The trend today is to use many inexpensive sensors instead of a few expensive ones, since the same accuracy can generally be obtained by fusing several dependent measurements. It also follows that the robustness against failing sensors is improved. As a result, the need for high-dimensional regression techniques is increasing.As measurements are dependent, the regressors will be constrained to some manifold. There is then a representation of the regressors, of the same dimension as the manifold, containing all predictive information. Since the manifold is commonly unknown, this representation has to be estimated using data. For this, manifold learning can be utilized. Having found a representation of the manifold constrained regressors, this low-dimensional representation can be used in an ordinary regression algorithm to find a prediction of the output. This has further been developed in the Weight Determination by Manifold Regularization (WDMR) approach.In most regression problems, prior information can improve prediction results. This is also true for high-dimensional regression problems. Research to include physical prior knowledge in high-dimensional regression i.e., gray-box high-dimensional regression, has been rather limited, however. We explore the possibilities to include prior knowledge in high-dimensional manifold constrained regression by the means of regularization. The result will be called gray-box WDMR. In gray-box WDMR we have the possibility to restrict ourselves to predictions which are physically plausible. This is done by incorporating dynamical models for how the regressors evolve on the manifold.

[1]  Svante Björklund,et al.  A Survey and Comparison of Time-Delay Estimation Methods in Linear Systems , 2003 .

[2]  Predrag Pucar Segmentation of Laser Range Radar Images using Hidden Markov Field Models , 1993 .

[3]  Andreas Eidehall,et al.  An Automotive Lane Guidance System , 2004 .

[4]  Fredrik Tjärnström,et al.  Quality Estimation of Approximate Models , 2000 .

[5]  Sören Andersson Sensor Array Processing : Application to Mobile Communication Systems and Dimension Reduction , 1990 .

[6]  Peter Peter MaMiS : A Programming Environment for Numerical/Symbolic Data Processing , 1988 .

[7]  S Posse,et al.  Functional magnetic resonance imaging in real time (FIRE): Sliding‐window correlation analysis and reference‐vector optimization , 2000, Magnetic resonance in medicine.

[8]  J. Wolpaw,et al.  Brain-computer communication: unlocking the locked in. , 2001, Psychological bulletin.

[9]  Ker-Chau Li,et al.  On Principal Hessian Directions for Data Visualization and Dimension Reduction: Another Application of Stein's Lemma , 1992 .

[10]  Gert Malmberg A Study of Adaptive Control of Missiles , 1986 .

[11]  Jacob Roll,et al.  A non-asymptotic approach to local modelling , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[12]  Jonas Elbornsson,et al.  Equalization of Distortion in A/D Converters , 2001 .

[13]  Bernhard E. Boser,et al.  A training algorithm for optimal margin classifiers , 1992, COLT '92.

[14]  Erik Wernholt,et al.  On Multivariable and Nonlinear Identification of Industrial Robots , 2004 .

[15]  Peter Andersson Adaptive Forgetting through Multiple Models and Adaptive Control of Car Dynamics , 1983 .

[16]  Fredrik Gustafsson,et al.  Power Control in Cellular Radio Systems , 2000 .

[17]  Urban Forssell Properties and Usage of Closed-loop Identification Methods , 1997 .

[18]  Svante Gunnarsson On the Mean Square Error of Transfer Function Estimates with Applications to Control , 1986 .

[19]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[20]  A. E. Hoerl,et al.  Ridge Regression: Applications to Nonorthogonal Problems , 1970 .

[21]  Tomaso A. Poggio,et al.  Regularization Networks and Support Vector Machines , 2000, Adv. Comput. Math..

[22]  T. Andersson Concepts and Algorithms for Non-Linear System Identifiability , 1994 .

[23]  Jacob Roll,et al.  Nonlinear system identification via direct weight optimization , 2005, Autom..

[24]  Jakob Roll Robust Verification and Identification of Piecewise Affine Systems , 2001 .

[25]  G. R. Muller,et al.  Clinical application of an EEG-based brain–computer interface: a case study in a patient with severe motor impairment , 2003, Clinical Neurophysiology.

[26]  Ingela Lind Regressor Selection in System Identification using ANOVA , 2001 .

[27]  Niclas Persson,et al.  Event Based Sampling with Application to Spectral Estimation , 2002 .

[28]  Eric R. Ziegel,et al.  The Elements of Statistical Learning , 2003, Technometrics.

[29]  K. Ståhl On the Frequency Domain Analysis of Nonlinear Systems , 1988 .

[30]  Bernhard Schölkopf,et al.  A Generalized Representer Theorem , 2001, COLT/EuroCOLT.

[31]  N. Bergman Bayesian Inference in Terrain Navigation , 1997 .

[32]  N. Birbaumer Breaking the silence: brain-computer interfaces (BCI) for communication and motor control. , 2006, Psychophysiology.

[33]  Michael I. Jordan,et al.  Regression on manifolds using kernel dimension reduction , 2007, ICML '07.

[34]  Hongtao Lu,et al.  Supervised LLE in ICA Space for Facial Expression Recognition , 2005, 2005 International Conference on Neural Networks and Brain.

[35]  Henrik Tidefelt Structural algorithms and perturbations in differential-algebraic equations , 2007 .

[36]  Michael I. Jordan,et al.  Kernel dimension reduction in regression , 2009, 0908.1854.

[37]  Nicolas Le Roux,et al.  The Curse of Highly Variable Functions for Local Kernel Machines , 2005, NIPS.

[38]  H. Fortell Volterra and Algebraic Approaches to the Zero Dynamics , 1994 .

[39]  Mikhail Belkin,et al.  Manifold Regularization: A Geometric Framework for Learning from Labeled and Unlabeled Examples , 2006, J. Mach. Learn. Res..

[40]  Magnus Andersson Experimental Design and Updating of Finite Element Models , 1997 .

[41]  I. Klein Planning for a Class of Sequential Control Problems , 1989 .

[42]  David Törnqvist,et al.  Statistical Fault Detection with Applications to IMU Disturbances , 2006 .

[43]  Mikhail Belkin,et al.  Laplacian Eigenmaps for Dimensionality Reduction and Data Representation , 2003, Neural Computation.

[44]  Tracking and decision making for automotive collision avoidance , 2002 .

[45]  Frida Gunnarsson On Modeling and Control of Network Queue Dynamics , 2003 .

[46]  M. Jirstrand Algebraic Methods for Modeling and Design in Control , 1996 .

[47]  T. McKelvey On State-Space Models in System Identification , 1994 .

[48]  Ali Rahimi Learning to Transform Time Series with a Few Examples , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[49]  G. Hendeby,et al.  Fundamental Estimation and Detection Limits in Linear Non-Gaussian Systems , 2005 .

[50]  J. Sjöberg Some Results On Optimal Control for Nonlinear Descriptor Systems , 2006 .

[51]  David D. Cox,et al.  Functional magnetic resonance imaging (fMRI) “brain reading”: detecting and classifying distributed patterns of fMRI activity in human visual cortex , 2003, NeuroImage.

[52]  Erik Geijer Lundin,et al.  Uplink Load in CDMA Cellular Systems , 2003 .

[53]  Xilin Shen,et al.  Analysis of Event-Related fMRI Data Using Diffusion Maps , 2005, IPMI.

[54]  R. Veit,et al.  Self-regulation of local brain activity using real-time functional magnetic resonance imaging (fMRI) , 2004, Journal of Physiology-Paris.

[55]  Alf Isaksson Identification of Time Varying Systems and Application of System Identification to Signal Processing , 1986 .

[56]  Todd Kuiken,et al.  Biofeedback in the Treatment of Phantom Limb Pain: A Time-Series Analysis , 2005, Applied psychophysiology and biofeedback.

[57]  Martin D. Buhmann,et al.  Radial Basis Functions: Theory and Implementations: Preface , 2003 .

[58]  P. Nordlund Sequential Monte Carlo Filters and Integrated Navigation , 2002 .

[59]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[60]  Xin Yang,et al.  Semi-supervised nonlinear dimensionality reduction , 2006, ICML.

[61]  Håkan Hjalmarsson On Estimation of Model Quality in System Identification , 1990 .

[62]  Yoshio Tanaka,et al.  Real-time functional MRI: development and emerging applications. , 2006, Magnetic resonance in medical sciences : MRMS : an official journal of Japan Society of Magnetic Resonance in Medicine.

[63]  Hongyuan Zha,et al.  Principal manifolds and nonlinear dimensionality reduction via tangent space alignment , 2004, SIAM J. Sci. Comput..

[64]  Jeroen D. Hol,et al.  Pose Estimation and Calibration Algorithms for Vision and Inertial Sensors , 2008 .

[65]  Karl Pearson F.R.S. LIII. On lines and planes of closest fit to systems of points in space , 1901 .

[66]  L. Ljung,et al.  USING MANIFOLD LEARNING FOR NONLINEAR SYSTEM IDENTIFICATION , 2007 .

[67]  Kayako Matsuo,et al.  Dynamic monitoring of brain activation under visual stimulation using fMRI—The advantage of real-time fMRI with sliding window GLM analysis , 2006, Journal of Neuroscience Methods.

[68]  Bernhard Schölkopf,et al.  A tutorial on support vector regression , 2004, Stat. Comput..

[69]  D. Donoho,et al.  Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[70]  Sala Horowitz,et al.  Biofeedback Applications: A Survey of Clinical Research , 2006 .

[71]  Jie Tian,et al.  Functional Feature Embedded Space Mapping of fMRI data , 2006, 2006 International Conference of the IEEE Engineering in Medicine and Biology Society.

[72]  Mille Millnert,et al.  Fast Power Control to Counteract Rayleigh Fading in Cellular Radio Systems , 1995 .

[73]  Jan Palmqvist On Integrity Monitoring of Integrated Navigation Systems , 1997 .

[74]  Lorenzo Rosasco,et al.  Manifold Regularization , 2007 .

[75]  Neil D. Lawrence,et al.  Gaussian Process Latent Variable Models for Visualisation of High Dimensional Data , 2003, NIPS.

[76]  Reshma Kaushik,et al.  Biofeedback assisted diaphragmatic breathing and systematic relaxation versus propranolol in long term prophylaxis of migraine. , 2005, Complementary therapies in medicine.

[77]  Olivier D. Faugeras,et al.  Nonlinear dimension reduction of fMRI data: the Laplacian embedding approach , 2004, 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821).

[78]  Zhijie Xia,et al.  Modeling and control of flexible manipulators , 1992 .

[79]  Jonas Blom Power Control in Cellular Radio Systems , 1998 .

[80]  H. Hotelling The most predictable criterion. , 1935 .

[81]  Thomas B. Schön,et al.  On computational methods for nonlinear estimation , 2003 .

[82]  Richard Bellman,et al.  Adaptive Control Processes: A Guided Tour , 1961, The Mathematical Gazette.

[83]  K. Forsman Applications of Constructive Algebra to Control Problems , 1990 .

[84]  K. Chen Observability and Invertability of Nonlinear Systems : A Differential Algebraic Approach , 1991 .

[85]  Stephen C. Strother,et al.  Support vector machines for temporal classification of block design fMRI data , 2005, NeuroImage.

[86]  R. Deichmann,et al.  Real-time functional magnetic resonance imaging: methods and applications. , 2007, Magnetic resonance imaging.

[87]  Mikael Norrlöf,et al.  On Analysis and Implementation of Iterative Learning Control , 1998 .

[88]  B. Wahlberg On Model Simplification in System Identification , 1985 .

[89]  J. Sjöberg Regularization Issues in Neural Network Models of Dynamical Systems , 1993 .

[90]  Anders Skeppstedt Construction of composite models from large data-sets , 1989, Proceedings of the 28th IEEE Conference on Decision and Control,.

[91]  Soo-Young Lee,et al.  Brain–computer interface using fMRI: spatial navigation by thoughts , 2004, Neuroreport.

[92]  Mille Millnert,et al.  Vehicle size and orientation estimation using geometric fitting , 2001 .

[93]  G. Wahba,et al.  Some results on Tchebycheffian spline functions , 1971 .

[94]  Ker-Chau Li,et al.  Sliced Inverse Regression for Dimension Reduction , 1991 .

[95]  John D E Gabrieli,et al.  Control over brain activation and pain learned by using real-time functional MRI. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[96]  A. Stenman Just-in-Time Models with Applications to Dynamical Systems , 1997 .

[97]  Björn Johansson,et al.  Patch-duplets for object recognition and pose estimation , 2005, The 2nd Canadian Conference on Computer and Robot Vision (CRV'05).

[98]  Henrik Ohlsson,et al.  Enabling bio-feedback using real-time fMRI , 2008, 2008 47th IEEE Conference on Decision and Control.

[99]  Rainer Goebel,et al.  Real-time independent component analysis of fMRI time-series , 2003, NeuroImage.

[100]  Anna Hagenblad,et al.  Aspects of the Identification of Wiener Models , 1999 .

[101]  Andrew W. Fitzgibbon,et al.  The Joint Manifold Model for Semi-supervised Multi-valued Regression , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[102]  Mukund Balasubramanian,et al.  The Isomap Algorithm and Topological Stability , 2002, Science.

[103]  Måns Östring,et al.  Identification, Diagnosis, and Control of a Flexible Robot Arm , 2002 .

[104]  Mikhail Belkin,et al.  Problems of learning on manifolds , 2003 .

[105]  J. Plantin Algebraic Methods for Verification and Control of Discrete Event Dynamic Systems , 1995 .

[106]  D. D. Ridder,et al.  Locally linear embedding for classification , 2002 .

[107]  Johanna Wallén,et al.  On Kinematic Modelling and Iterative Learning Control of Industrial Robots , 2008 .

[108]  Fredrik Gustafsson,et al.  Power Control in Cellular Radio Systems : Analysis and Design , 1999 .

[109]  Magnus Larsson,et al.  On Modeling and Diagnosis of Discrete Event Dynamic Systems , 1997 .

[110]  F. Gustafsson Optimal Segmentation of Linear Regression Parameters , 1991 .

[111]  M. Enqvist Some Results on Linear Models of Nonlinear Systems , 2003 .

[112]  Bernhard Schölkopf,et al.  Semi-Supervised Learning (Adaptive Computation and Machine Learning) , 2006 .

[113]  Xiaoping P. Hu,et al.  Real‐time fMRI using brain‐state classification , 2007, Human brain mapping.

[114]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[115]  Mikhail Belkin,et al.  Tikhonov regularization and semi-supervised learning on large graphs , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[116]  Mikhail Belkin,et al.  Regularization and Semi-supervised Learning on Large Graphs , 2004, COLT.

[117]  Jonas Gillberg,et al.  Methods for Frequency Domain Estimation of Continuous-Time Models , 2004 .

[118]  Arthur E. Hoerl,et al.  Ridge Regression: Biased Estimation for Nonorthogonal Problems , 2000, Technometrics.

[119]  Erkki Oja,et al.  Artificial Neural Networks and Neural Information Processing — ICANN/ICONIP 2003 , 2003, Lecture Notes in Computer Science.

[120]  Rickard Karlsson,et al.  Simulation Based Methods for Target Tracking , 2002 .

[121]  Janne Harju Johansson,et al.  A Structure Utilizing Inexact Primal-Dual Interior-Point Method for Analysis of Linear Differential Inclusions , 2008 .

[122]  Valur Einarsson On Verification of Switched Systems using Abstractions , 1998 .

[123]  Ola Härkegård,et al.  Flight Control Design using Backstepping , 2001 .

[124]  Daniel Axehill,et al.  Applications of Integer Quadratic Programming in Control and Communication , 2005 .

[125]  Mats Viberg On the Adaptive Array Problem , 1987 .

[126]  D. Lindgren Subspace Selection Techniques for Classification Problems , 2002 .

[127]  Werner Lutzenberger,et al.  Neurofeedback Treatment for Attention-Deficit/Hyperactivity Disorder in Children: A Comparison with Methylphenidate , 2003, Applied psychophysiology and biofeedback.

[128]  Krister Edström,et al.  Simulation of Mode Switching Systems Using Switched Bond Graphs , 1996 .

[129]  R. H. Moore,et al.  Regression Graphics: Ideas for Studying Regressions Through Graphics , 1998, Technometrics.

[130]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[131]  Claes Olsson,et al.  Active Engine Vibration Isolation using Feedback Control , 2002 .

[132]  G. R. Muller,et al.  Brain oscillations control hand orthosis in a tetraplegic , 2000, Neuroscience Letters.

[133]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[134]  Stan Z. Li,et al.  Manifold Learning and Applications in Recognition , 2005 .

[135]  J. Gunnarsson On Modeling of Discrete Event Dynamic Systems : Using Symbolic Algebraic Methods , 1995 .

[136]  Mikhail Belkin,et al.  Beyond the point cloud: from transductive to semi-supervised learning , 2005, ICML.

[137]  P. Lindskog Algorithms and Tools for System Identification Using Prior Knowledge , 1994 .

[138]  U. Strehl,et al.  Modification of Slow Cortical Potentials in Patients with Refractory Epilepsy: A Controlled Outcome Study , 2001, Epilepsia.

[139]  J. Löfberg,et al.  Linear Model Predictive Control Stability and Robustness , 2001 .