Correlations between genomic GC levels and optimal growth temperatures in prokaryotes

[1]  G. Bernardi,et al.  Compositional constraints and genome evolution , 2005, Journal of Molecular Evolution.

[2]  Giorgio Bernardi,et al.  Structural and evolutionary genomics : natural selection in genome evolution , 2004 .

[3]  E. Kimura,et al.  Comparative complete genome sequence analysis of the amino acid replacements responsible for the thermostability of Corynebacterium efficiens. , 2003, Genome research.

[4]  G. C. Johns,et al.  Base compositions of genes encoding alpha-actin and lactate dehydrogenase-A from differently adapted vertebrates show no temperature-adaptive variation in G + C content. , 2003, Molecular biology and evolution.

[5]  James R. Cole,et al.  The Ribosomal Database Project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy , 2003, Nucleic Acids Res..

[6]  S. Blair Hedges,et al.  The origin and evolution of model organisms , 2002, Nature Reviews Genetics.

[7]  Hugo Naya,et al.  Aerobiosis Increases the Genomic Guanine Plus Cytosine Content (GC%) in Prokaryotes , 2002, Journal of Molecular Evolution.

[8]  N. Grishin,et al.  Genome trees and the tree of life. , 2002, Trends in genetics : TIG.

[9]  Eduardo P C Rocha,et al.  Base composition bias might result from competition for metabolic resources. , 2002, Trends in genetics : TIG.

[10]  A. R. Merchant,et al.  High guanine–cytosine content is not an adaptation to high temperature: a comparative analysis amongst prokaryotes , 2001, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[11]  C. Gautier,et al.  Compositional bias in DNA. , 2000, Current opinion in genetics & development.

[12]  A. Halpern,et al.  Weighted neighbor joining: a likelihood-based approach to distance-based phylogeny reconstruction. , 2000, Molecular biology and evolution.

[13]  Nicolas Carels,et al.  Synonymous and Nonsynonymous Substitutions in Genes from Gramineae: Intragenic Correlations , 1999, Journal of Molecular Evolution.

[14]  D. Gatherer,et al.  Nitrogen-fixing aerobic bacteria have higher genomic GC content than non-fixing species within the same genus. , 2004, Hereditas.

[15]  J. Lobry,et al.  Relationships Between Genomic G+C Content, RNA Secondary Structures, and Optimal Growth Temperature in Prokaryotes , 1997, Journal of Molecular Evolution.

[16]  G. Bernardi,et al.  The vertebrate genome: isochores and evolution. , 1993, Molecular biology and evolution.

[17]  Keith C. Norris,et al.  DNA cytosine methylation and heat-induced deamination , 1986, Bioscience reports.

[18]  J. Felsenstein Phylogenies and the Comparative Method , 1985, The American Naturalist.

[19]  T. Tanaka,et al.  High guanine plus cytosine content in the third letter of codons of an extreme thermophile. DNA sequence of the isopropylmalate dehydrogenase of Thermus thermophilus. , 1984, The Journal of biological chemistry.

[20]  G Bernardi,et al.  An analysis of eukaryotic genomes by density gradient centrifugation. , 1976, Journal of molecular biology.

[21]  R. E. Buchanan,et al.  Bergey's Manual of Determinative Bacteriology. , 1975 .

[22]  B. Ames,et al.  Sunlight ultraviolet and bacterial DNA base ratios. , 1970, Science.

[23]  C. Yanofsky,et al.  Altered base ratios in the DNA of an Escherichia coli mutator strain. , 1967, Proceedings of the National Academy of Sciences of the United States of America.

[24]  E. Freese On the evolution of the base composition of DNA , 1962 .

[25]  N. Sueoka On the genetic basis of variation and heterogeneity of DNA base composition. , 1962, Proceedings of the National Academy of Sciences of the United States of America.

[26]  A. Spirin,et al.  A Correlation between the Compositions of Deoxyribonucleic and Ribonucleic Acids , 1958, Nature.

[27]  S. T. Cowan Bergey's Manual of Determinative Bacteriology , 1948, Nature.