Virtual Implementation by Bounded Mechanisms: Complete Information

A social choice rule (SCR) F maps preference profiles to lotteries over some finite set of outcomes. F is virtually implementable in (pure and mixed) Nash equilibria provided that for all E > 0, there exists a mechanism such that for each preference profile t, its set of Nash equilibrium outcomes at θ is E-closed to the socially desirable set F(θ). Under a domain restriction, we obtain the following result: When there are at least three agents, any F is virtually implementable in Nash equilibrium, as well as in rationalizable strategies, by a bounded mechanism. No "tail-chasing" construction, common in the constructive proofs of the literature, is used to assure that undesired strategy combinations do not form a Nash equilibrium.

[1]  Hitoshi Matsushima,et al.  Implementation without expected utility: ex-post verifiability , 2019, Social Choice and Welfare.

[2]  Stephen Morris,et al.  Rationalizable Implementation , 2009, J. Econ. Theory.

[3]  Adam Brandenburger,et al.  Rationalizability and Correlated Equilibria , 1987 .

[4]  D. Fudenberg,et al.  Interim Correlated Rationalizability , 2007 .

[5]  Christoph Müller,et al.  Robust virtual implementation under common strong belief in rationality , 2016, J. Econ. Theory.

[6]  Matthew O. Jackson,et al.  Undominated Nash Implementation in Bounded Mechanisms , 1994 .

[7]  E. Maskin Nash Equilibrium and Welfare Optimality , 1999 .

[8]  A. Rubinstein The Electronic Mail Game: Strategic Behavior Under "Almost Common Knowledge" , 1989 .

[9]  Vincent P. Crawford,et al.  A Game of Fair Division , 1977 .

[10]  David Pearce Rationalizable Strategic Behavior and the Problem of Perfection , 1984 .

[11]  D. Monderer,et al.  Approximating common knowledge with common beliefs , 1989 .

[12]  R. Serrano,et al.  Level-$k$ Mechanism Design , 2018, The Review of Economic Studies.

[13]  Stephen Morris,et al.  Topologies on Types , 2005 .

[14]  Thomas R. Palfrey,et al.  Nash Implementation Using Undominated Strategies , 1991 .

[15]  M. Jackson Implementation in Undominated Strategies: A Look at Bounded Mechanisms , 1992 .

[16]  Muhamet Yildiz,et al.  A Structure Theorem for Rationalizability with Application to Robust Predictions of Refinements , 2007 .

[17]  John C. Harsanyi,et al.  Games with Incomplete Information Played by "Bayesian" Players, I-III: Part I. The Basic Model& , 2004, Manag. Sci..

[18]  D. Bergemann,et al.  Robust Mechanism Design , 2003 .

[19]  Navin Kartik,et al.  Simple mechanisms and preferences for honesty , 2014, Games Econ. Behav..

[20]  Muhamet Yildiz,et al.  Interim correlated rationalizability in infinite games , 2017 .

[21]  Ludovic Renou,et al.  Implementation in Mixed Nash Equilibrium , 2010, J. Econ. Theory.

[22]  Jonathan Weinstein,et al.  Sensitivity of equilibrium behavior to higher-order beliefs in nice games , 2011, Games Econ. Behav..

[23]  François Maniquet,et al.  Virtual Nash Implementation with Admissible Support , 2006 .

[24]  Stephen Morris,et al.  Robust Implementation in General Mechanisms , 2008, Games Econ. Behav..

[25]  D. Bergemann,et al.  Robust Virtual Implementation , 2009 .

[26]  Yifei Sun,et al.  Maskin meets Abreu and Matsushima , 2021, Theoretical Economics.

[27]  Drew Fudenberg,et al.  Subgame-Perfect Implementation Under Information Perturbations , 2012 .

[28]  Arunava Sen,et al.  VIRTUAL IMPLEMENTATION IN NASH EQUILIBRIUM , 1991 .

[29]  William Thomson,et al.  Concepts Of Implementation , 1996 .

[30]  Takashi Kunimoto,et al.  A new necessary condition for implementation in iteratively undominated strategies , 2011, J. Econ. Theory.

[31]  Jeffrey C. Ely,et al.  Implementation with Near-Complete Information , 2003 .

[32]  Takashi Kunimoto,et al.  Rationalizable Implementation of Correspondences , 2019, Math. Oper. Res..

[33]  Marion Oury,et al.  Continuous Implementation , 2009 .

[34]  S. Zamir,et al.  Formulation of Bayesian analysis for games with incomplete information , 1985 .

[35]  B. Bernheim Rationalizable Strategic Behavior , 1984 .

[36]  Ritesh Jain Rationalizable Implementation of Social Choice Correspondences , 2019, Games Econ. Behav..

[37]  D. Bergemann,et al.  Robust Implementation in Direct Mechanisms , 2009 .

[38]  Jeffrey C. Ely,et al.  Foundations of Dominant Strategy Mechanisms , 2007 .

[39]  Antonio Penta,et al.  Full Implementation and Belief Restrictions , 2017 .

[40]  Hitoshi Matsushima,et al.  Virtual implementation in iteratively undominated strategies: complete information , 1992 .

[41]  Philippe Jehiel,et al.  Locally robust implementation and its limits , 2012, J. Econ. Theory.