Improved initial data for black hole binaries by asymptotic matching of post-Newtonian and perturbed black hole solutions
暂无分享,去创建一个
[1] José A. González,et al. Metric of a tidally perturbed spinning black hole , 2005, gr-qc/0510076.
[2] S. Nissanke. Post-Newtonian freely specifiable initial data for binary black holes in numerical relativity , 2005, gr-qc/0509128.
[3] M. Hannam. Quasicircular orbits of conformal thin-sandwich puncture binary black holes , 2005, gr-qc/0505120.
[4] Mark A. Miller. Accuracy requirements for the calculation of gravitational waveforms from coalescing compact binaries in numerical relativity , 2005, gr-qc/0502087.
[5] E. Poisson. Metric of a tidally distorted nonrotating black hole. , 2005, Physical review letters.
[6] H. Pfeiffer,et al. Excision boundary conditions for black-hole initial data , 2004, gr-qc/0407078.
[7] Lawrence E. Kidder,et al. Optimal constraint projection for hyperbolic evolution systems , 2004, gr-qc/0407011.
[8] S. Shapiro,et al. Quasi-equilibrium binary black hole initial data for dynamical evolutions , 2004, gr-qc/0406020.
[9] B. Bruegmann,et al. Single-domain spectral method for black hole puncture data , 2004, gr-qc/0404056.
[10] B. Bruegmann,et al. Quasiequilibrium binary black hole sequences for puncture data derived from helical Killing vector conditions , 2003, gr-qc/0307027.
[11] M. Hannam,et al. Can a combination of the conformal thin-sandwich and puncture methods yield binary black hole solutions in quasiequilibrium? , 2003, gr-qc/0306028.
[12] P. Laguna,et al. Gauge conditions for binary black hole puncture data based on an approximate helical Killing vector , 2003, gr-qc/0306020.
[13] R. Matzner,et al. Physics and Initial Data for Multiple Black Hole Spacetimes , 2003, gr-qc/0305071.
[14] K. Alvi. Note on ingoing coordinates for binary black holes , 2003, gr-qc/0302061.
[15] P. Diener,et al. Binary black hole initial data for numerical general relativity based on post-Newtonian data , 2002, gr-qc/0207011.
[16] L. Blanchet. Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries , 2002, Living reviews in relativity.
[17] S. Teukolsky,et al. Comparing initial-data sets for binary black holes , 2002, gr-qc/0203085.
[18] S. Bonazzola,et al. Binary black holes in circular orbits. II. Numerical methods and first results , 2001, gr-qc/0106016.
[19] J. M. Aguirregabiria,et al. Comparing Metrics at Large: Harmonic vs Quo-Harmonic Coordinates , 2001, gr-qc/0104019.
[20] R. Matzner,et al. Solving the initial value problem of two black holes. , 2000, Physical review letters.
[21] G. B. Cook. Initial Data for Numerical Relativity , 2000, Living reviews in relativity.
[22] T. Baumgarte. Innermost stable circular orbit of binary black holes , 2000, gr-qc/0004050.
[23] P. University,et al. Approximate analytical solutions to the initial data problem of black hole binary systems , 2000, gr-qc/0001077.
[24] K. Alvi. Approximate binary-black-hole metric , 1999, gr-qc/9912113.
[25] B. Schutz,et al. Gravitational wave astronomy , 1999, gr-qc/9911034.
[26] Jr.,et al. Conformal ``thin sandwich'' data for the initial-value problem of general relativity , 1998, gr-qc/9810051.
[27] S. Orszag,et al. Advanced mathematical methods for scientists and engineers I: asymptotic methods and perturbation theory. , 1999 .
[28] P. Jaranowski,et al. Third post-Newtonian higher order ADM Hamilton dynamics for two-body point-mass systems , 1998 .
[29] D. Shoemaker,et al. Initial data and coordinates for multiple black hole systems , 1998, gr-qc/9805023.
[30] P. Jaranowski,et al. Radiative 3.5 post-Newtonian ADM Hamiltonian for many-body point-mass systems , 1997 .
[31] Cook,et al. Three-dimensional initial data for the collision of two black holes. II. Quasicircular orbits for equal-mass black holes. , 1994, Physical review. D, Particles and fields.
[32] G. Schäfer,et al. The gravitational quadrupole radiation-reaction force and the canonical formalism of ADM , 1985 .
[33] Thorne,et al. Laws of motion and precession for black holes and other bodies. , 1985, Physical review. D, Particles and fields.
[34] S. Orszag,et al. Advanced Mathematical Methods For Scientists And Engineers , 1979 .
[35] P. D'Eath. Interaction of two black holes in the slow-motion limit , 1975 .
[36] P. D'Eath. Dynamics of a small black hole in a background universe , 1975 .
[37] W. L. Burke. Gravitational Radiation Damping of Slowly Moving Systems Calculated Using Matched Asymptotic Expansions , 1971 .
[38] of Relativity. , 2022 .