Hierarchically-structured metalloprotein composite coatings biofabricated from co-existing condensed liquid phases

[1]  Hongbin Li,et al.  Mechanical Unfolding Pathway of the High-Potential Iron-Sulfur Protein Revealed by Single-Molecule Atomic Force Microscopy: Toward a General Unfolding Mechanism for Iron-sulfur Proteins. , 2018, The journal of physical chemistry. B.

[2]  J. Waite,et al.  Intertidal exposure favors the soft-studded armor of adaptive mussel coatings , 2018, Nature Communications.

[3]  Matthew J. Harrington,et al.  Mussel Byssus Structure‐Function and Fabrication as Inspiration for Biotechnological Production of Advanced Materials , 2018, Biotechnology journal.

[4]  G. Mayer,et al.  Mechanoresponsive lipid-protein nanoglobules facilitate reversible fibre formation in velvet worm slime , 2017, Nature Communications.

[5]  Hee Young Yoo,et al.  Salt Triggers the Simple Coacervation of an Underwater Adhesive When Cations Meet Aromatic π Electrons in Seawater. , 2017, ACS nano.

[6]  J. Waite,et al.  A cohort of new adhesive proteins identified from transcriptomic analysis of mussel foot glands , 2017, Journal of The Royal Society Interface.

[7]  M. MacLachlan,et al.  Liquid crystal templating of nanomaterials with nature's toolbox , 2017 .

[8]  M. Dean,et al.  Rapid self-assembly of complex biomolecular architectures during mussel byssus biofabrication , 2017, Nature Communications.

[9]  Diana M. Mitrea,et al.  Coexisting Liquid Phases Underlie Nucleolar Subcompartments , 2016, Cell.

[10]  Krzysztof Matyjaszewski,et al.  From precision polymers to complex materials and systems , 2016 .

[11]  H. Birkedal,et al.  Mussel-Inspired Materials: Self-Healing through Coordination Chemistry. , 2016, Chemistry.

[12]  Admir Masic,et al.  Mechanical homeostasis of a DOPA-enriched biological coating from mussels in response to metal variation , 2015, Journal of The Royal Society Interface.

[13]  Peter Fratzl,et al.  The mechanical role of metal ions in biogenic protein-based materials. , 2014, Angewandte Chemie.

[14]  A. Toga,et al.  Coiling and maturation of a high-performance fibre in hagfish slime gland thread cells , 2014, Nature Communications.

[15]  Gareth H McKinley,et al.  Metal-coordination: Using one of nature's tricks to control soft material mechanics. , 2014, Journal of materials chemistry. B.

[16]  Veit Elser,et al.  Hierarchical Porous Polymer Scaffolds from Block Copolymers , 2013, Science.

[17]  J. Lehn Perspectives in chemistry--steps towards complex matter. , 2013, Angewandte Chemie.

[18]  Bruce P. Lee,et al.  Mussel-Inspired Adhesives and Coatings. , 2011, Annual review of materials research.

[19]  J. Herbert Waite,et al.  Mussel protein adhesion depends on thiol-mediated redox modulation , 2011, Nature chemical biology.

[20]  Peter Fratzl,et al.  Iron-Clad Fibers: A Metal-Based Biological Strategy for Hard Flexible Coatings , 2010, Science.

[21]  Thomas Scheibel,et al.  Spider silk: from soluble protein to extraordinary fiber. , 2009, Angewandte Chemie.

[22]  G. Stucky,et al.  Metals and the integrity of a biological coating: the cuticle of mussel byssus. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[23]  Richard Weinkamer,et al.  Nature’s hierarchical materials , 2007 .

[24]  Georg E Fantner,et al.  Protective coatings on extensible biofibres. , 2007, Nature materials.

[25]  J. Waite,et al.  Linking Adhesive and Structural Proteins in the Attachment Plaque of Mytilus californianus* , 2006, Journal of Biological Chemistry.

[26]  Norbert F Scherer,et al.  Single-molecule mechanics of mussel adhesion , 2006, Proceedings of the National Academy of Sciences.

[27]  J. Hubbell,et al.  Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering , 2005, Nature Biotechnology.

[28]  Jean-Marie Lehn,et al.  Toward Self-Organization and Complex Matter , 2002, Science.

[29]  Fredrickson,et al.  Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores , 1998, Science.

[30]  Q. Huo,et al.  Surfactant Control of Phases in the Synthesis of Mesoporous Silica-Based Materials , 1996 .

[31]  T. Creighton Proteins: Structures and Molecular Properties , 1986 .

[32]  T. L. Coombs,et al.  The kinetics of accumulation and excretion of ferric hydroxide in Mytilus edulis (I.) and its distribution in the tissues , 1976 .

[33]  A Tamarin,et al.  The structure and formation of the byssus attachment plaque in Mytilus , 1976, Journal of morphology.

[34]  M. Hayat,et al.  Principles and Techniques of Electron Microscopy: Biological Applications , 1975 .

[35]  M. Hayat,et al.  Principles and Techniques of Electron Microscopy: Biological Applications , 1973 .

[36]  Robert Langer,et al.  Supramolecular biomaterials. , 2016, Nature materials.

[37]  Hongbo Zeng,et al.  Mussel-inspired hydrogels for biomedical and environmental applications , 2015 .

[38]  M. Denny,et al.  Marine ecomechanics. , 2010, Annual review of marine science.

[39]  J. Waite,et al.  The formation of mussel byssus: anatomy of a natural manufacturing process. , 1992, Results and problems in cell differentiation.

[40]  G. Fredrickson,et al.  Block copolymer thermodynamics: theory and experiment. , 1990, Annual review of physical chemistry.

[41]  L. Zuccarello Ultrastructural and cytochemical study on the enzyme gland of the foot of a mollusc. , 1981 .

[42]  G. Bahr Osmium tetroxide and ruthenium tetroxide and their reactions with biologically important substances. Electron stains. III. , 1954, Experimental cell research.