A posteriori error estimation and adaptivity for degenerate parabolic problems

Two explicit error representation formulas are derived for degenerate parabolic PDEs, which are based on evaluating a parabolic residual in negative norms. The resulting upper bounds are valid for any numerical method, and rely on regularity properties of solutions of a dual parabolic problem in nondivergence form with vanishing diffusion coefficient. They are applied to a practical space-time discretization consisting of C 0 piecewise linear finite elements over highly graded unstructured meshes, and backward finite differences with varying time-steps. Two rigorous a posteriori error estimates are derived for this scheme, and used in designing an efficient adaptive algorithm, which equidistributes space and time discretization errors via refinement/coarsening. A simulation finally compares the behavior of the rigorous a posteriori error estimators with a heuristic approach, and hints at the potentials and reliability of the proposed method.

[1]  A. Schmidt,et al.  Adapting meshes and time-steps for phase change problems , 1997 .

[2]  A. Schmidt,et al.  Adaptive Solution of Phase Change Problems Over Unstructured Tetrahedral Meshes , 1999 .

[3]  W. Rheinboldt,et al.  Error Estimates for Adaptive Finite Element Computations , 1978 .

[4]  Ricardo H. Nochetto,et al.  AN ADAPTIVE FINITE ELEMENT METHOD FOR TWO-PHASE STEFAN PROBLEMS IN TWO SPACE DIMENSIONS. PART I: STABILITY AND ERROR ESTIMATES , 1991 .

[5]  A. Friedman Variational principles and free-boundary problems , 1982 .

[6]  Kenneth Eriksson,et al.  Adaptive finite element methods for parabolic problems V: long-time integration , 1995 .

[7]  P. Clément Approximation by finite element functions using local regularization , 1975 .

[8]  Ricardo H. Nochetto,et al.  Error estimates for multidimensional singular parabolic problems , 1987 .

[9]  Eberhard Bänsch,et al.  Local mesh refinement in 2 and 3 dimensions , 1991, IMPACT Comput. Sci. Eng..

[10]  O. Ladyženskaja Linear and Quasilinear Equations of Parabolic Type , 1968 .

[11]  Kenneth Eriksson,et al.  Adaptive finite element methods for parabolic problems II: optimal error estimates in L ∞ L 2 and L ∞ L ∞ , 1995 .

[12]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[13]  Ricardo H. Nochetto,et al.  An Adaptive Finite Element Method for Two-Phase Stefan Problems in Two Space Dimensions. II: Implementation and Numerical Experiments , 1991, SIAM J. Sci. Comput..

[14]  Kenneth Eriksson,et al.  Adaptive finite element methods for parabolic problems. I.: a linear model problem , 1991 .

[15]  Kenneth Eriksson,et al.  Adaptive finite element methods for parabolic problems IV: nonlinear problems , 1995 .