Affine Lie algebras and tame quivers
暂无分享,去创建一个
[1] L. Peng,et al. Root Categories and Simple Lie Algebras , 1997 .
[2] Christine Riedtmann. Lie Algebras Generated by Indecomposables , 1994 .
[3] C. Ringel. The Composition Algebra of a Cyclic Quiver , 1993 .
[4] C. Ringel. Towards an explicit description of the quantum group of type An , 1993 .
[5] G. Lusztig. Affine quivers and canonical bases , 1992 .
[6] P. Gabriel,et al. Representations of Finite-Dimensional Algebras , 1992 .
[7] C. Ringel. From representations of quivers via Hall and Loewy algebras to quantum groups , 1992 .
[8] G. Lusztig. Quivers, perverse sheaves, and quantized enveloping algebras , 1991 .
[9] C. Ringel. Hall polynomials for the representation-finite hereditary algebras , 1990 .
[10] T. Yokonuma,et al. Toroidal Lie algebras and vertex representations , 1990 .
[11] G. Lusztig. Intersection cohomology methods in representation theory , 1990 .
[12] R. Steinberg. Finite subgroups of ${\rm SU}_2$, Dynkin diagrams and affine Coxeter elements. , 1985 .
[13] G. Segal. Unitary representations of some infinite dimensional groups , 1981 .
[14] Geoffrey Mason,et al. The Santa Cruz Conference on Finite Groups , 1981 .
[15] V. Kac,et al. Basic representations of affine Lie algebras and dual resonance models , 1980 .
[16] P. M. Cohn. GROUPES ET ALGÉBRES DE LIE , 1977 .
[17] Claus Michael Ringel,et al. Indecomposable Representations of Graphs and Algebras , 1976 .
[18] Robert MacPherson,et al. Chern Classes for Singular Algebraic Varieties , 1974 .
[19] L. Nazarova. REPRESENTATIONS OF QUIVERS OF INFINITE TYPE , 1973 .
[20] I. Gelfand,et al. COXETER FUNCTORS AND GABRIEL'S THEOREM , 1973 .
[21] Peter Donovan,et al. The representation theory of finite graphs and associated algebras , 1973 .
[22] P. Gabriel. Unzerlegbare Darstellungen I , 1972 .