Affine Lie algebras and tame quivers

[1]  L. Peng,et al.  Root Categories and Simple Lie Algebras , 1997 .

[2]  Christine Riedtmann Lie Algebras Generated by Indecomposables , 1994 .

[3]  C. Ringel The Composition Algebra of a Cyclic Quiver , 1993 .

[4]  C. Ringel Towards an explicit description of the quantum group of type An , 1993 .

[5]  G. Lusztig Affine quivers and canonical bases , 1992 .

[6]  P. Gabriel,et al.  Representations of Finite-Dimensional Algebras , 1992 .

[7]  C. Ringel From representations of quivers via Hall and Loewy algebras to quantum groups , 1992 .

[8]  G. Lusztig Quivers, perverse sheaves, and quantized enveloping algebras , 1991 .

[9]  C. Ringel Hall polynomials for the representation-finite hereditary algebras , 1990 .

[10]  T. Yokonuma,et al.  Toroidal Lie algebras and vertex representations , 1990 .

[11]  G. Lusztig Intersection cohomology methods in representation theory , 1990 .

[12]  R. Steinberg Finite subgroups of ${\rm SU}_2$, Dynkin diagrams and affine Coxeter elements. , 1985 .

[13]  G. Segal Unitary representations of some infinite dimensional groups , 1981 .

[14]  Geoffrey Mason,et al.  The Santa Cruz Conference on Finite Groups , 1981 .

[15]  V. Kac,et al.  Basic representations of affine Lie algebras and dual resonance models , 1980 .

[16]  P. M. Cohn GROUPES ET ALGÉBRES DE LIE , 1977 .

[17]  Claus Michael Ringel,et al.  Indecomposable Representations of Graphs and Algebras , 1976 .

[18]  Robert MacPherson,et al.  Chern Classes for Singular Algebraic Varieties , 1974 .

[19]  L. Nazarova REPRESENTATIONS OF QUIVERS OF INFINITE TYPE , 1973 .

[20]  I. Gelfand,et al.  COXETER FUNCTORS AND GABRIEL'S THEOREM , 1973 .

[21]  Peter Donovan,et al.  The representation theory of finite graphs and associated algebras , 1973 .

[22]  P. Gabriel Unzerlegbare Darstellungen I , 1972 .