Theory of adaptive finite element methods: An introduction
暂无分享,去创建一个
[1] G. M.,et al. Partial Differential Equations I , 2023, Applied Mathematical Sciences.
[2] F. Brezzi. On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .
[3] P. Clément. Approximation by finite element functions using local regularization , 1975 .
[4] Wolfgang Dahmen,et al. Adaptive Finite Element Methods with convergence rates , 2004, Numerische Mathematik.
[5] Kunibert G. Siebert,et al. Design of Adaptive Finite Element Software - The Finite Element Toolbox ALBERTA , 2005, Lecture Notes in Computational Science and Engineering.
[6] P. Grisvard. Elliptic Problems in Nonsmooth Domains , 1985 .
[7] Ricardo H. Nochetto,et al. Convergence of Adaptive Finite Element Methods for General Second Order Linear Elliptic PDEs , 2005, SIAM J. Numer. Anal..
[8] Zhiming Chen,et al. Uniform convergence of multigrid V-cycle on adaptively refined finite element meshes for second order elliptic problems , 2006 .
[9] Kunibert G. Siebert,et al. A convergence proof for adaptive finite elements without lower bound , 2011 .
[10] É. A. Storozhenko,et al. Jackson's theorem in the spaces Lp(Rk), 0 , 1978 .
[11] Michel Fortin,et al. Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.
[12] Jindřich Nečas,et al. Sur une méthode pour résoudre les équations aux dérivées partielles du type elliptique, voisine de la variationnelle , 1961 .
[13] D. Braess. BOOK REVIEW: Finite Elements: Theory, fast solvers and applications in solid mechanics, 2nd edn , 2002 .
[14] Jia Feng,et al. An adaptive finite element algorithm with reliable and efficient error control for linear parabolic problems , 2004, Math. Comput..
[15] Christian Kreuzer,et al. Quasi-Optimal Convergence Rate for an Adaptive Finite Element Method , 2008, SIAM J. Numer. Anal..
[16] J. Cea. Approximation variationnelle des problèmes aux limites , 1964 .
[17] Wolfgang Dahmen,et al. Approximation Classes for Adaptive Methods , 2002 .
[18] P. Lax,et al. IX. Parabolic Equations , 1955 .
[19] ROB STEVENSON,et al. The completion of locally refined simplicial partitions created by bisection , 2008, Math. Comput..
[20] Ronald H. W. Hoppe,et al. Finite element methods for Maxwell's equations , 2005, Math. Comput..
[21] Philippe G. Ciarlet,et al. 6. Finite Element Methods for the Plate Problem , 2002 .
[22] P. Bassanini,et al. Elliptic Partial Differential Equations of Second Order , 1997 .
[23] Carsten Carstensen,et al. Fully Reliable Localized Error Control in the FEM , 1999, SIAM J. Sci. Comput..
[24] I. Babuska. Error-bounds for finite element method , 1971 .
[25] Giovanni P. Galdi,et al. An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Steady-State Problems , 2011 .
[26] R. Verfürth. A posteriori error estimators for the Stokes equations , 1989 .
[27] Kunibert G. Siebert,et al. A BASIC CONVERGENCE RESULT FOR CONFORMING ADAPTIVE FINITE ELEMENTS , 2008 .
[28] Andreas Veeser,et al. LOCALLY EFFICIENT AND RELIABLE A POSTERIORI ERROR ESTIMATORS FOR DIRICHLET PROBLEMS , 2006 .
[29] M. Bebendorf. A Note on the Poincaré Inequality for Convex Domains , 2003 .
[30] Helmut Jarausch. On an Adaptive Grid Refining Technique for Finite Element Approximations , 1986 .
[31] Peter Oswald,et al. On Function Spaces Related to Finite Element Approximation Theory , 1990 .
[32] Eberhard Bänsch,et al. Local mesh refinement in 2 and 3 dimensions , 1991, IMPACT Comput. Sci. Eng..
[33] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis: Oden/A Posteriori , 2000 .
[34] Gary R. Consolazio,et al. Finite Elements , 2007, Handbook of Dynamic System Modeling.
[35] I. Babuska,et al. The finite element method and its reliability , 2001 .
[36] G. Galdi. An Introduction to the Mathematical Theory of the Navier-Stokes Equations : Volume I: Linearised Steady Problems , 1994 .
[37] Igor Kossaczký. A recursive approach to local mesh refinement in two and three dimensions , 1994 .
[38] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis , 2000 .
[39] I. Babuška,et al. Direct and inverse error estimates for finite elements with mesh refinements , 1979 .
[40] Ricardo H. Nochetto,et al. Optimal multilevel methods for H(grad), H(curl), and H(div) systems on graded and unstructured grids , 2009 .
[41] T. Dupont,et al. Polynomial approximation of functions in Sobolev spaces , 1980 .
[42] C. T. Traxler,et al. An algorithm for adaptive mesh refinement inn dimensions , 1997, Computing.
[43] W. Rheinboldt,et al. Error Estimates for Adaptive Finite Element Computations , 1978 .
[44] M. Rivara. Mesh Refinement Processes Based on the Generalized Bisection of Simplices , 1984 .
[45] Andreas Veeser,et al. Explicit Upper Bounds for Dual Norms of Residuals , 2009, SIAM J. Numer. Anal..
[46] Ricardo H. Nochetto,et al. Local problems on stars: A posteriori error estimators, convergence, and performance , 2003, Math. Comput..
[47] Joseph M. Maubach,et al. Local bisection refinement for $n$-simplicial grids generated by reflection , 2017 .
[48] Robert Wayne Carroll. Équations aux dérivées partielles , 1966 .
[49] H. Weinberger,et al. An optimal Poincaré inequality for convex domains , 1960 .
[50] L. R. Scott,et al. Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .
[51] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[52] Ludmil T. Zikatanov,et al. Some observations on Babu\vs}ka and Brezzi theories , 2003, Numerische Mathematik.
[53] Antonio Guarnieri,et al. WITH THE COLLABORATION OF , 2009 .
[54] Ricardo H. Nochetto,et al. An Adaptive Finite Element Method for Two-Phase Stefan Problems in Two Space Dimensions. II: Implementation and Numerical Experiments , 1991, SIAM J. Sci. Comput..
[55] Christian Kreuzer,et al. Linear Convergence of an Adaptive Finite Element Method for the p-Laplacian Equation , 2008, SIAM J. Numer. Anal..
[56] Rüdiger Verfürth,et al. A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .
[57] David M. Mount,et al. The Cost of Compatible Refinement of Simplex Decomposition Trees , 2006, IMR.
[58] R. DeVore,et al. Besov regularity for elliptic boundary value problems , 1997 .
[59] D. Braess. Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics , 1995 .
[60] Rob P. Stevenson,et al. Optimality of a Standard Adaptive Finite Element Method , 2007, Found. Comput. Math..
[61] Ricardo H. Nochetto,et al. Data Oscillation and Convergence of Adaptive FEM , 2000, SIAM J. Numer. Anal..
[62] Andreas Veeser,et al. Convergent adaptive finite elements for the nonlinear Laplacian , 2002, Numerische Mathematik.
[63] R. Hoppe,et al. Residual based a posteriori error estimators for eddy current computation , 2000 .
[64] Ricardo H. Nochetto,et al. Convergence of Adaptive Finite Element Methods , 2002, SIAM Rev..
[65] R. DeVore,et al. Nonlinear approximation , 1998, Acta Numerica.
[66] Michael Hintermüller,et al. AN A POSTERIORI ERROR ANALYSIS OF ADAPTIVE FINITE ELEMENT METHODS FOR DISTRIBUTED ELLIPTIC CONTROL PROBLEMS WITH CONTROL CONSTRAINTS , 2008 .
[67] W. Dörfler. A convergent adaptive algorithm for Poisson's equation , 1996 .
[68] Kenneth Eriksson,et al. Adaptive finite element methods for parabolic problems. I.: a linear model problem , 1991 .
[69] Michael Vogelius,et al. Feedback and adaptive finite element solution of one-dimensional boundary value problems , 1984 .
[70] Douglas N. Arnold,et al. Locally Adapted Tetrahedral Meshes Using Bisection , 2000, SIAM Journal on Scientific Computing.
[71] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[72] George G. Lorentz,et al. Constructive Approximation , 1993, Grundlehren der mathematischen Wissenschaften.
[73] Tosio Kato. Estimation of Iterated Matrices, with application to the von Neumann condition , 1960 .
[74] Joachim Schöberl,et al. A posteriori error estimates for Maxwell equations , 2007, Math. Comput..
[75] E. G. Sewell,et al. Automatic generation of triangulations for piecewise polynomial approximation , 1972 .
[76] R. DeVore,et al. Interpolation of Besov-Spaces , 1988 .
[77] Kunibert G. Siebert,et al. A Unilaterally Constrained Quadratic Minimization with Adaptive Finite Elements , 2007, SIAM J. Optim..
[78] William F. Mitchell,et al. A comparison of adaptive refinement techniques for elliptic problems , 1989, TOMS.
[79] R. Bruce Kellogg,et al. On the poisson equation with intersecting interfaces , 1974 .
[80] Ricardo H. Nochetto,et al. AN ADAPTIVE FINITE ELEMENT METHOD FOR TWO-PHASE STEFAN PROBLEMS IN TWO SPACE DIMENSIONS. PART I: STABILITY AND ERROR ESTIMATES , 1991 .
[81] R. Skeel,et al. Unified Multilevel Adaptive Finite Element Methods for Elliptic Problems , 1988 .
[82] Barry Joe,et al. Quality Local Refinement of Tetrahedral Meshes Based on Bisection , 1995, SIAM J. Sci. Comput..
[83] A. Schmidt,et al. Design of Adaptive Finite Element Software , 2005 .