Theory of adaptive finite element methods: An introduction

This is a survey on the theory of adaptive finite element methods (AFEM), which are fundamental in modern computational science and engineering. We present a self-contained and up-to-date discussion of AFEM for linear second order elliptic partial differential equations (PDEs) and dimension d>1, with emphasis on the differences and advantages of AFEM over standard FEM. The material is organized in chapters with problems that extend and complement the theory. We start with the functional framework, inf-sup theory, and Petrov-Galerkin method, which are the basis of FEM. We next address four topics of essence in the theory of AFEM that cannot be found in one single article: mesh refinement by bisection, piecewise polynomial approximation in graded meshes, a posteriori error analysis, and convergence and optimal decay rates of AFEM. The first topic is of geometric and combinatorial nature, and describes bisection as a rather simple and efficient technique to create conforming graded meshes with optimal complexity. The second topic explores the potentials of FEM to compensate singular behavior with local resolution and so reach optimal error decay. This theory, although insightful, is insufficient to deal with PDEs since it relies on knowing the exact solution. The third topic provides the missing link, namely a posteriori error estimators, which hinge exclusively on accessible data: we restrict ourselves to the simplest residual-type estimators and present a complete discussion of upper and lower bounds, along with the concept of oscillation and its critical role. The fourth topic refers to the convergence of adaptive loops and its comparison with quasi-uniform refinement. We first show, under rather modest assumptions on the problem class and AFEM, convergence in the natural norm associated to the variational formulation. We next restrict the problem class to coercive symmetric bilinear forms, and show that AFEM is a contraction for a suitable error notion involving the induced energy norm. This property is then instrumental to prove optimal cardinality of AFEM for a class of singular functions, for which the standard FEM is suboptimal.

[1]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[2]  F. Brezzi On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .

[3]  P. Clément Approximation by finite element functions using local regularization , 1975 .

[4]  Wolfgang Dahmen,et al.  Adaptive Finite Element Methods with convergence rates , 2004, Numerische Mathematik.

[5]  Kunibert G. Siebert,et al.  Design of Adaptive Finite Element Software - The Finite Element Toolbox ALBERTA , 2005, Lecture Notes in Computational Science and Engineering.

[6]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[7]  Ricardo H. Nochetto,et al.  Convergence of Adaptive Finite Element Methods for General Second Order Linear Elliptic PDEs , 2005, SIAM J. Numer. Anal..

[8]  Zhiming Chen,et al.  Uniform convergence of multigrid V-cycle on adaptively refined finite element meshes for second order elliptic problems , 2006 .

[9]  Kunibert G. Siebert,et al.  A convergence proof for adaptive finite elements without lower bound , 2011 .

[10]  É. A. Storozhenko,et al.  Jackson's theorem in the spaces Lp(Rk), 0 , 1978 .

[11]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[12]  Jindřich Nečas,et al.  Sur une méthode pour résoudre les équations aux dérivées partielles du type elliptique, voisine de la variationnelle , 1961 .

[13]  D. Braess BOOK REVIEW: Finite Elements: Theory, fast solvers and applications in solid mechanics, 2nd edn , 2002 .

[14]  Jia Feng,et al.  An adaptive finite element algorithm with reliable and efficient error control for linear parabolic problems , 2004, Math. Comput..

[15]  Christian Kreuzer,et al.  Quasi-Optimal Convergence Rate for an Adaptive Finite Element Method , 2008, SIAM J. Numer. Anal..

[16]  J. Cea Approximation variationnelle des problèmes aux limites , 1964 .

[17]  Wolfgang Dahmen,et al.  Approximation Classes for Adaptive Methods , 2002 .

[18]  P. Lax,et al.  IX. Parabolic Equations , 1955 .

[19]  ROB STEVENSON,et al.  The completion of locally refined simplicial partitions created by bisection , 2008, Math. Comput..

[20]  Ronald H. W. Hoppe,et al.  Finite element methods for Maxwell's equations , 2005, Math. Comput..

[21]  Philippe G. Ciarlet,et al.  6. Finite Element Methods for the Plate Problem , 2002 .

[22]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[23]  Carsten Carstensen,et al.  Fully Reliable Localized Error Control in the FEM , 1999, SIAM J. Sci. Comput..

[24]  I. Babuska Error-bounds for finite element method , 1971 .

[25]  Giovanni P. Galdi,et al.  An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Steady-State Problems , 2011 .

[26]  R. Verfürth A posteriori error estimators for the Stokes equations , 1989 .

[27]  Kunibert G. Siebert,et al.  A BASIC CONVERGENCE RESULT FOR CONFORMING ADAPTIVE FINITE ELEMENTS , 2008 .

[28]  Andreas Veeser,et al.  LOCALLY EFFICIENT AND RELIABLE A POSTERIORI ERROR ESTIMATORS FOR DIRICHLET PROBLEMS , 2006 .

[29]  M. Bebendorf A Note on the Poincaré Inequality for Convex Domains , 2003 .

[30]  Helmut Jarausch On an Adaptive Grid Refining Technique for Finite Element Approximations , 1986 .

[31]  Peter Oswald,et al.  On Function Spaces Related to Finite Element Approximation Theory , 1990 .

[32]  Eberhard Bänsch,et al.  Local mesh refinement in 2 and 3 dimensions , 1991, IMPACT Comput. Sci. Eng..

[33]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis: Oden/A Posteriori , 2000 .

[34]  Gary R. Consolazio,et al.  Finite Elements , 2007, Handbook of Dynamic System Modeling.

[35]  I. Babuska,et al.  The finite element method and its reliability , 2001 .

[36]  G. Galdi An Introduction to the Mathematical Theory of the Navier-Stokes Equations : Volume I: Linearised Steady Problems , 1994 .

[37]  Igor Kossaczký A recursive approach to local mesh refinement in two and three dimensions , 1994 .

[38]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[39]  I. Babuška,et al.  Direct and inverse error estimates for finite elements with mesh refinements , 1979 .

[40]  Ricardo H. Nochetto,et al.  Optimal multilevel methods for H(grad), H(curl), and H(div) systems on graded and unstructured grids , 2009 .

[41]  T. Dupont,et al.  Polynomial approximation of functions in Sobolev spaces , 1980 .

[42]  C. T. Traxler,et al.  An algorithm for adaptive mesh refinement inn dimensions , 1997, Computing.

[43]  W. Rheinboldt,et al.  Error Estimates for Adaptive Finite Element Computations , 1978 .

[44]  M. Rivara Mesh Refinement Processes Based on the Generalized Bisection of Simplices , 1984 .

[45]  Andreas Veeser,et al.  Explicit Upper Bounds for Dual Norms of Residuals , 2009, SIAM J. Numer. Anal..

[46]  Ricardo H. Nochetto,et al.  Local problems on stars: A posteriori error estimators, convergence, and performance , 2003, Math. Comput..

[47]  Joseph M. Maubach,et al.  Local bisection refinement for $n$-simplicial grids generated by reflection , 2017 .

[48]  Robert Wayne Carroll Équations aux dérivées partielles , 1966 .

[49]  H. Weinberger,et al.  An optimal Poincaré inequality for convex domains , 1960 .

[50]  L. R. Scott,et al.  Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .

[51]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[52]  Ludmil T. Zikatanov,et al.  Some observations on Babu\vs}ka and Brezzi theories , 2003, Numerische Mathematik.

[53]  Antonio Guarnieri,et al.  WITH THE COLLABORATION OF , 2009 .

[54]  Ricardo H. Nochetto,et al.  An Adaptive Finite Element Method for Two-Phase Stefan Problems in Two Space Dimensions. II: Implementation and Numerical Experiments , 1991, SIAM J. Sci. Comput..

[55]  Christian Kreuzer,et al.  Linear Convergence of an Adaptive Finite Element Method for the p-Laplacian Equation , 2008, SIAM J. Numer. Anal..

[56]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[57]  David M. Mount,et al.  The Cost of Compatible Refinement of Simplex Decomposition Trees , 2006, IMR.

[58]  R. DeVore,et al.  Besov regularity for elliptic boundary value problems , 1997 .

[59]  D. Braess Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics , 1995 .

[60]  Rob P. Stevenson,et al.  Optimality of a Standard Adaptive Finite Element Method , 2007, Found. Comput. Math..

[61]  Ricardo H. Nochetto,et al.  Data Oscillation and Convergence of Adaptive FEM , 2000, SIAM J. Numer. Anal..

[62]  Andreas Veeser,et al.  Convergent adaptive finite elements for the nonlinear Laplacian , 2002, Numerische Mathematik.

[63]  R. Hoppe,et al.  Residual based a posteriori error estimators for eddy current computation , 2000 .

[64]  Ricardo H. Nochetto,et al.  Convergence of Adaptive Finite Element Methods , 2002, SIAM Rev..

[65]  R. DeVore,et al.  Nonlinear approximation , 1998, Acta Numerica.

[66]  Michael Hintermüller,et al.  AN A POSTERIORI ERROR ANALYSIS OF ADAPTIVE FINITE ELEMENT METHODS FOR DISTRIBUTED ELLIPTIC CONTROL PROBLEMS WITH CONTROL CONSTRAINTS , 2008 .

[67]  W. Dörfler A convergent adaptive algorithm for Poisson's equation , 1996 .

[68]  Kenneth Eriksson,et al.  Adaptive finite element methods for parabolic problems. I.: a linear model problem , 1991 .

[69]  Michael Vogelius,et al.  Feedback and adaptive finite element solution of one-dimensional boundary value problems , 1984 .

[70]  Douglas N. Arnold,et al.  Locally Adapted Tetrahedral Meshes Using Bisection , 2000, SIAM Journal on Scientific Computing.

[71]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[72]  George G. Lorentz,et al.  Constructive Approximation , 1993, Grundlehren der mathematischen Wissenschaften.

[73]  Tosio Kato Estimation of Iterated Matrices, with application to the von Neumann condition , 1960 .

[74]  Joachim Schöberl,et al.  A posteriori error estimates for Maxwell equations , 2007, Math. Comput..

[75]  E. G. Sewell,et al.  Automatic generation of triangulations for piecewise polynomial approximation , 1972 .

[76]  R. DeVore,et al.  Interpolation of Besov-Spaces , 1988 .

[77]  Kunibert G. Siebert,et al.  A Unilaterally Constrained Quadratic Minimization with Adaptive Finite Elements , 2007, SIAM J. Optim..

[78]  William F. Mitchell,et al.  A comparison of adaptive refinement techniques for elliptic problems , 1989, TOMS.

[79]  R. Bruce Kellogg,et al.  On the poisson equation with intersecting interfaces , 1974 .

[80]  Ricardo H. Nochetto,et al.  AN ADAPTIVE FINITE ELEMENT METHOD FOR TWO-PHASE STEFAN PROBLEMS IN TWO SPACE DIMENSIONS. PART I: STABILITY AND ERROR ESTIMATES , 1991 .

[81]  R. Skeel,et al.  Unified Multilevel Adaptive Finite Element Methods for Elliptic Problems , 1988 .

[82]  Barry Joe,et al.  Quality Local Refinement of Tetrahedral Meshes Based on Bisection , 1995, SIAM J. Sci. Comput..

[83]  A. Schmidt,et al.  Design of Adaptive Finite Element Software , 2005 .