Multiomic atlas with functional stratification and developmental dynamics of zebrafish cis-regulatory elements

[1]  S. Lacadie,et al.  Single-cell-resolved dynamics of chromatin architecture delineate cell and regulatory states in zebrafish embryos , 2022, Cell genomics.

[2]  Juan M. Vaquerizas,et al.  Chromatin architecture transitions from zebrafish sperm through early embryogenesis , 2021, Genome research.

[3]  Juan M. Vaquerizas,et al.  Germ cell differentiation requires Tdrd7-dependent chromatin and transcriptome reprogramming marked by germ plasm relocalization , 2021, Developmental cell.

[4]  H. Bazzi,et al.  The chromatin, topological and regulatory properties of pluripotency-associated poised enhancers are conserved in vivo , 2021, Nature Communications.

[5]  Juan M. Vaquerizas,et al.  FAN-C: a feature-rich framework for the analysis and visualisation of chromosome conformation capture data , 2020, Genome Biology.

[6]  Nadezhda T. Doncheva,et al.  The STRING database in 2021: customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets , 2020, Nucleic Acids Res..

[7]  R. Hardison,et al.  A map of cis-regulatory elements and 3D genome structures in zebrafish , 2020, Nature.

[8]  L. Zhu,et al.  An improved zebrafish transcriptome annotation for sensitive and comprehensive detection of cell type-specific genes , 2020, eLife.

[9]  Kyle J. Gaulton,et al.  An atlas of dynamic chromatin landscapes in mouse fetal development , 2020, Nature.

[10]  Michael J. Purcaro,et al.  Expanded encyclopaedias of DNA elements in the human and mouse genomes , 2020, Nature.

[11]  James B Brown,et al.  *-DCC: A platform to collect, annotate, and explore a large variety of sequencing experiments , 2020, GigaScience.

[12]  Zhuqiang Zhang,et al.  Histone H3K27 acetylation is dispensable for enhancer activity in mouse embryonic stem cells , 2020, Genome Biology.

[13]  Piotr J. Balwierz,et al.  Dual-initiation promoters with intertwined canonical and TCT/TOP transcription start sites diversify transcript processing , 2020, Nature Communications.

[14]  V. Fellman,et al.  A sensitive assay for dNTPs based on long synthetic oligonucleotides, EvaGreen dye and inhibitor-resistant high-fidelity DNA polymerase , 2019, bioRxiv.

[15]  A. McKenna,et al.  Emergence of Neuronal Diversity during Vertebrate Brain Development , 2019, Neuron.

[16]  Phillip A. Richmond,et al.  JASPAR 2020: update of the open-access database of transcription factor binding profiles , 2019, Nucleic Acids Res..

[17]  Robin Andersson,et al.  CAGEfightR: analysis of 5′-end data using R/Bioconductor , 2019, BMC Bioinformatics.

[18]  Lauren M. Saunders,et al.  A Single-Cell Transcriptome Atlas for Zebrafish Development , 2019, bioRxiv.

[19]  Anshul Kundaje,et al.  The ENCODE Blacklist: Identification of Problematic Regions of the Genome , 2019, Scientific Reports.

[20]  Ting Wang,et al.  WashU Epigenome Browser update 2019 , 2019, Nucleic Acids Res..

[21]  D. Stainier,et al.  Genetic compensation triggered by mutant mRNA degradation , 2019, Nature.

[22]  E. Patton,et al.  Spotlight on zebrafish: the next wave of translational research , 2019, Disease Models & Mechanisms.

[23]  Boris Lenhard,et al.  A novel measure of non-coding genome conservation identifies genomic regulatory blocks within primates , 2018, Bioinform..

[24]  Ron Wehrens,et al.  Flexible Self-Organizing Maps in kohonen 3.0 , 2018 .

[25]  Monte Westerfield,et al.  The Zebrafish Information Network: new support for non-coding genes, richer Gene Ontology annotations and the Alliance of Genome Resources , 2018, Nucleic Acids Res..

[26]  Piotr J. Balwierz,et al.  Amphioxus functional genomics and the origins of vertebrate gene regulation , 2018, Nature.

[27]  Leland McInnes,et al.  UMAP: Uniform Manifold Approximation and Projection , 2018, J. Open Source Softw..

[28]  S. Koren,et al.  De novo assembly of the goldfish (Carassius auratus) genome and the evolution of genes after whole-genome duplication , 2018, Science Advances.

[29]  Juan M. Vaquerizas,et al.  Chromatin conformation analysis of primary patient tissue using a low input Hi-C method , 2018, Nature Communications.

[30]  D. Stainier,et al.  Zebrafish mutants and TEAD reporters reveal essential functions for Yap and Taz in posterior cardinal vein development , 2018, Scientific Reports.

[31]  Lucas J. T. Kaaij,et al.  Systemic Loss and Gain of Chromatin Architecture throughout Zebrafish Development , 2018, Cell reports.

[32]  A. Regev,et al.  Single-cell reconstruction of developmental trajectories during zebrafish embryogenesis , 2018, Science.

[33]  Allon M. Klein,et al.  The dynamics of gene expression in vertebrate embryogenesis at single-cell resolution , 2018, Science.

[34]  H. R. Crollius,et al.  Enhancer–gene maps in the human and zebrafish genomes using evolutionary linkage conservation , 2018, bioRxiv.

[35]  J. Gerton,et al.  Cohesin facilitates zygotic genome activation in zebrafish , 2018, Development.

[36]  Astrid Gall,et al.  Ensembl 2018 , 2017, Nucleic Acids Res..

[37]  Manolis Kellis,et al.  Chromatin-state discovery and genome annotation with ChromHMM , 2017, Nature Protocols.

[38]  B. Cairns,et al.  Placeholder Nucleosomes Underlie Germline-to-Embryo DNA Methylation Reprogramming , 2017, Cell.

[39]  Ying Su,et al.  The emerging roles of phosphatases in Hedgehog pathway , 2017, Cell Communication and Signaling.

[40]  B. Lenhard,et al.  Topologically associating domains are ancient features that coincide with Metazoan clusters of extreme noncoding conservation , 2017, Nature Communications.

[41]  Anton J. Enright,et al.  A high-resolution mRNA expression time course of embryonic development in zebrafish , 2017, bioRxiv.

[42]  Monte Westerfield,et al.  The Zebrafish Model Organism Database: new support for human disease models, mutation details, gene expression phenotypes and searching , 2016, Nucleic Acids Res..

[43]  Ting Chen,et al.  WALT: fast and accurate read mapping for bisulfite sequencing , 2016, Bioinform..

[44]  A. Chinnaiyan,et al.  TACO produces robust multi-sample transcriptome assemblies from RNA-seq , 2016, Nature Methods.

[45]  N. Perrimon,et al.  Loss-of-function genetic tools for animal models: cross-species and cross-platform differences , 2016, Nature Reviews Genetics.

[46]  Roland Eils,et al.  Complex heatmaps reveal patterns and correlations in multidimensional genomic data , 2016, Bioinform..

[47]  Jeffrey T Leek,et al.  Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown , 2016, Nature Protocols.

[48]  Juan M. Vaquerizas,et al.  TADtool: visual parameter identification for TAD-calling algorithms , 2016, Bioinform..

[49]  Andrew D. Rouillard,et al.  Enrichr: a comprehensive gene set enrichment analysis web server 2016 update , 2016, Nucleic Acids Res..

[50]  Wendy A Bickmore,et al.  Histone H3 globular domain acetylation identifies a new class of enhancers , 2016, Nature Genetics.

[51]  Matthew D. Schultz,et al.  Active DNA demethylation at enhancers during the vertebrate phylotypic period , 2016, Nature Genetics.

[52]  P. Holland,et al.  A single three-dimensional chromatin compartment in amphioxus indicates a stepwise evolution of vertebrate Hox bimodal regulation , 2016, Nature Genetics.

[53]  Ge Tan,et al.  TFBSTools: an R/bioconductor package for transcription factor binding site analysis , 2016, Bioinform..

[54]  D. Onichtchouk,et al.  DANIO-CODE: Toward an Encyclopedia of DNA Elements in Zebrafish , 2016, Zebrafish.

[55]  U. Strähle,et al.  Loss of function of myosin chaperones triggers Hsf1-mediated transcriptional response in skeletal muscle cells , 2015, Genome Biology.

[56]  Philip A. Ewels,et al.  HiCUP: pipeline for mapping and processing Hi-C data , 2015, F1000Research.

[57]  O. Bogdanović,et al.  Genome-wide epigenetic cross-talk between DNA methylation and H3K27me3 in zebrafish embryos , 2015, Genomics data.

[58]  M. Frith,et al.  Split-alignment of genomes finds orthologies more accurately , 2015, Genome Biology.

[59]  Kristian Vlahovicek,et al.  Genomation: a Toolkit to Summarize, Annotate and Visualize Genomic Intervals , 2015, Bioinform..

[60]  Gavin Sherlock,et al.  Structured nucleosome fingerprints enable high-resolution mapping of chromatin architecture within regulatory regions , 2015, bioRxiv.

[61]  Edwin Cuppen,et al.  Sambamba: fast processing of NGS alignment formats , 2015, Bioinform..

[62]  Jing Liang,et al.  Chromatin architecture reorganization during stem cell differentiation , 2015, Nature.

[63]  A. Regev,et al.  Spatial reconstruction of single-cell gene expression , 2015, Nature Biotechnology.

[64]  Boris Lenhard,et al.  CAGEr: precise TSS data retrieval and high-resolution promoterome mining for integrative analyses , 2015, Nucleic acids research.

[65]  Michael Q. Zhang,et al.  Integrative analysis of 111 reference human epigenomes , 2015, Nature.

[66]  J. T. Erichsen,et al.  Enhancer Evolution across 20 Mammalian Species , 2015, Cell.

[67]  J. W. Cross,et al.  Comparative epigenomics in distantly related teleost species identifies conserved cis-regulatory nodes active during the vertebrate phylotypic period , 2014, Genome research.

[68]  Fidel Ramírez,et al.  deepTools: a flexible platform for exploring deep-sequencing data , 2014, Nucleic Acids Res..

[69]  Piotr J. Balwierz,et al.  ISMARA: automated modeling of genomic signals as a democracy of regulatory motifs , 2014, Genome research.

[70]  C. Gieger,et al.  Restless Legs Syndrome-associated intronic common variant in Meis1 alters enhancer function in the developing telencephalon , 2014, Genome research.

[71]  Björn Usadel,et al.  Trimmomatic: a flexible trimmer for Illumina sequence data , 2014, Bioinform..

[72]  T. Meehan,et al.  An atlas of active enhancers across human cell types and tissues , 2014, Nature.

[73]  Cesare Furlanello,et al.  A promoter-level mammalian expression atlas , 2015 .

[74]  Nan Li,et al.  Two independent transcription initiation codes overlap on vertebrate core promoters , 2014, Nature.

[75]  R. Young,et al.  Super-Enhancers in the Control of Cell Identity and Disease , 2013, Cell.

[76]  I. Dawid Faculty Opinions recommendation of Nanog, Pou5f1 and SoxB1 activate zygotic gene expression during the maternal-to-zygotic transition. , 2013 .

[77]  Howard Y. Chang,et al.  Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position , 2013, Nature Methods.

[78]  Miler T. Lee,et al.  Nanog, Pou5f1 and SoxB1 activate zygotic gene expression during the maternal-to-zygotic transition , 2013, Nature.

[79]  Boris Lenhard,et al.  Dynamic regulation of the transcription initiation landscape at single nucleotide resolution during vertebrate embryogenesis , 2013, Genome research.

[80]  Matthew D. Schultz,et al.  Global Epigenomic Reconfiguration During Mammalian Brain Development , 2013, Science.

[81]  B. Cairns,et al.  Reprogramming the Maternal Zebrafish Genome after Fertilization to Match the Paternal Methylation Pattern , 2013, Cell.

[82]  Jing Zhang,et al.  Sperm, but Not Oocyte, DNA Methylome Is Inherited by Zebrafish Early Embryos , 2013, Cell.

[83]  Anton J. Enright,et al.  The zebrafish reference genome sequence and its relationship to the human genome , 2013, Nature.

[84]  David A. Orlando,et al.  Master Transcription Factors and Mediator Establish Super-Enhancers at Key Cell Identity Genes , 2013, Cell.

[85]  Hunter B. Fraser,et al.  Extensive conservation of ancient microsynteny across metazoans due to cis-regulatory constraints , 2012, Genome research.

[86]  S. V. van Heeringen,et al.  Dynamics of enhancer chromatin signatures mark the transition from pluripotency to cell specification during embryogenesis , 2012, Genome research.

[87]  Raymond K. Auerbach,et al.  An Integrated Encyclopedia of DNA Elements in the Human Genome , 2012, Nature.

[88]  Dan Xie,et al.  Comparative Epigenomic Annotation of Regulatory DNA , 2012, Cell.

[89]  A. Giraldez,et al.  Ribosome Profiling Shows That miR-430 Reduces Translation Before Causing mRNA Decay in Zebrafish , 2012, Science.

[90]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[91]  Michael F. Lin,et al.  Systematic identification of long noncoding RNAs expressed during zebrafish embryogenesis. , 2012, Genome research.

[92]  Piero Carninci,et al.  5′ end–centered expression profiling using cap-analysis gene expression and next-generation sequencing , 2012, Nature Protocols.

[93]  Mikhail Pachkov,et al.  MotEvo: integrated Bayesian probabilistic methods for inferring regulatory sites and motifs on multiple alignments of DNA sequences , 2012, Bioinform..

[94]  Manolis Kellis,et al.  ChromHMM: automating chromatin-state discovery and characterization , 2012, Nature Methods.

[95]  D. Bartel,et al.  Conserved Function of lincRNAs in Vertebrate Embryonic Development despite Rapid Sequence Evolution , 2011, Cell.

[96]  Rasko Leinonen,et al.  The sequence read archive: explosive growth of sequencing data , 2011, Nucleic Acids Res..

[97]  Peter J. Bickel,et al.  Measuring reproducibility of high-throughput experiments , 2011, 1110.4705.

[98]  Naoki Irie,et al.  Comparative transcriptome analysis reveals vertebrate phylotypic period during organogenesis , 2011, Nature communications.

[99]  Ryan A. Flynn,et al.  A unique chromatin signature uncovers early developmental enhancers in humans , 2011, Nature.

[100]  Raymond K. Auerbach,et al.  Integrative Analysis of the Caenorhabditis elegans Genome by the modENCODE Project , 2010, Science.

[101]  E. Davidson Emerging properties of animal gene regulatory networks , 2010, Nature.

[102]  W. J. Kent,et al.  BigWig and BigBed: enabling browsing of large distributed datasets. , 2010, Bioinformatics.

[103]  C. Glass,et al.  Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. , 2010, Molecular cell.

[104]  Aviv Regev,et al.  Chromatin signature of embryonic pluripotency is established during genome activation , 2010, Nature.

[105]  Aaron R. Quinlan,et al.  Bioinformatics Applications Note Genome Analysis Bedtools: a Flexible Suite of Utilities for Comparing Genomic Features , 2022 .

[106]  C. Walsh,et al.  Tgif1 and Tgif2 regulate Nodal signaling and are required for gastrulation , 2010, Development.

[107]  Markus Reischl,et al.  Automated high-throughput mapping of promoter-enhancer interactions in zebrafish embryos , 2009, Nature Methods.

[108]  Piotr J. Balwierz,et al.  Methods for analyzing deep sequencing expression data: constructing the human and mouse promoterome with deepCAGE data , 2009, Genome Biology.

[109]  E. Birney,et al.  Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt , 2009, Nature Protocols.

[110]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[111]  M. Gerstein,et al.  Unlocking the secrets of the genome , 2009, Nature.

[112]  Robert Gentleman,et al.  rtracklayer: an R package for interfacing with genome browsers , 2009, Bioinform..

[113]  Martin S. Taylor,et al.  The transcriptional network that controls growth arrest and differentiation in a human myeloid leukemia cell line , 2009, Nature Genetics.

[114]  S. Buratowski,et al.  Gene Expression--Where to Start? , 2008, Science.

[115]  Gene W. Yeo,et al.  Divergent Transcription from Active Promoters , 2008, Science.

[116]  Clifford A. Meyer,et al.  Model-based Analysis of ChIP-Seq (MACS) , 2008, Genome Biology.

[117]  Z. Weng,et al.  The Insulator Binding Protein CTCF Positions 20 Nucleosomes around Its Binding Sites across the Human Genome , 2008, PLoS genetics.

[118]  Boris Lenhard,et al.  Ancora: a web resource for exploring highly conserved noncoding elements and their association with developmental regulatory genes , 2008, Genome Biology.

[119]  Atsushi Miyawaki,et al.  Visualizing Spatiotemporal Dynamics of Multicellular Cell-Cycle Progression , 2008, Cell.

[120]  Boris Lenhard,et al.  Genomic regulatory blocks underlie extensive microsynteny conservation in insects. , 2007, Genome research.

[121]  K. Howe,et al.  Genomic regulatory blocks encompass multiple neighboring genes and maintain conserved synteny in vertebrates. , 2007, Genome research.

[122]  S. Sen,et al.  Inhibition of CBF/NF-Y mediated transcription activation arrests cells at G2/M phase and suppresses expression of genes activated at G2/M phase of the cell cycle , 2006, Nucleic acids research.

[123]  B. Moor,et al.  BioMart and Bioconductor: a powerful link between biological databases and microarray data analysis , 2005, Bioinform..

[124]  Y. Bang,et al.  Cdk2-dependent phosphorylation of the NF-Y transcription factor is essential for the expression of the cell cycle-regulatory genes and cell cycle G1/S and G2/M transitions , 2004, Oncogene.

[125]  Tom H. Pringle,et al.  The human genome browser at UCSC. , 2002, Genome research.

[126]  W. J. Kent,et al.  BLAT--the BLAST-like alignment tool. , 2002, Genome research.

[127]  D. Higgins,et al.  T-Coffee: A novel method for fast and accurate multiple sequence alignment. , 2000, Journal of molecular biology.

[128]  C. Kimmel,et al.  Stages of embryonic development of the zebrafish , 1995, Developmental dynamics : an official publication of the American Association of Anatomists.

[129]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[130]  Florian Hahne,et al.  Visualizing Genomic Data Using Gviz and Bioconductor , 2016, Statistical Genomics.

[131]  Piero Carninci,et al.  Detecting expressed genes using CAGE. , 2014, Methods in molecular biology.

[132]  Melissa C. Greven,et al.  An integrated encyclopedia of DNA elements in the human genome , 2014 .

[133]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[134]  Adam C. Siepel,et al.  PHAST and RPHAST: phylogenetic analysis with space/time models , 2011, Briefings Bioinform..

[135]  Teuvo Kohonen,et al.  Self-organized formation of topologically correct feature maps , 2004, Biological Cybernetics.

[136]  Christopher D. Brown,et al.  Identification of Functional Elements and Regulatory Circuits by Drosophila modENCODE , 2010, Science.