Highly efficient and time economical purification of olefin metathesis products from metal residues using an isocyanide scavenger

A sustainable protocol of olefin metathesis in non-degassed, undistilled ethyl acetate under air with commercially available self-scavenging ruthenium catalysts is described. Furthermore, a time economical, cost-effective and scalable method of removal of ruthenium residues is presented. Treatment of post-reaction mixtures with an isocyanide scavenger and then with acid followed by a simple filtration is shown to yield OM products with ruthenium contamination below 5 ppm even in highly challenging cases. Finally, a telescope RCM/Suzuki–Miyaura sequence with a rapid and efficient purification protocol for simultaneous removal of Ru and Pd residues from solution is described.

[1]  D. Hughes,et al.  Olefin Metathesis in Drug Discovery and Development—Examples from Recent Patent Literature , 2017 .

[2]  Vidar R. Jensen,et al.  Loss and Reformation of Ruthenium Alkylidene: Connecting Olefin Metathesis, Catalyst Deactivation, Regeneration, and Isomerization. , 2017, Journal of the American Chemical Society.

[3]  Marco Eissen,et al.  Mass Efficiency of Alkene Syntheses with Tri- and Tetrasubstituted Double Bonds , 2017 .

[4]  K. Maloney,et al.  Potassium isopropyl xanthate (PIX): an ultra-efficient palladium scavenger , 2017 .

[5]  J. R. Griffiths,et al.  Kinetics and Mechanism of Isocyanide-Promoted Carbene Insertion into the Aryl Substituent of an N-Heterocyclic Carbene Ligand in Ruthenium-Based Metathesis Catalysts , 2017 .

[6]  Hoyong Chung,et al.  Modified N-Heterocyclic Carbene Ligand for the Recovery of Olefin Metathesis Catalysts via Noncovalent Host–Guest Interactions , 2017, ACS omega.

[7]  R. Guterman,et al.  CapturePhos – A phosphorus-rich polymer as a homogeneous catalyst scavenger , 2017 .

[8]  M. Meier,et al.  Synthesis of potential bisphenol A substitutes by isomerising metathesis of renewable raw materials , 2017 .

[9]  Eduardo N. dos Santos,et al.  p-Cymene as Solvent for Olefin Metathesis: Matching Efficiency and Sustainability. , 2017, ChemSusChem.

[10]  M. Pawłowski,et al.  Continuous flow ring-closing metathesis, an environmentally-friendly route to 2,5-dihydro-1H-pyrrole-3-carboxylates , 2017 .

[11]  Bin Xu,et al.  Metal-catalyzed C-H functionalization involving isocyanides. , 2017, Chemical Society reviews.

[12]  Roger A. Sheldon,et al.  The E factor 25 years on: the rise of green chemistry and sustainability , 2017 .

[13]  A. Kozakiewicz,et al.  Bis(Cyclic Alkyl Amino Carbene) Ruthenium Complexes: A Versatile, Highly Efficient Tool for Olefin Metathesis , 2016, Angewandte Chemie.

[14]  K. Grela,et al.  Forged and fashioned for faithfulness-ruthenium olefin metathesis catalysts bearing ammonium tags. , 2017, Chemical communications.

[15]  S. Viamajala,et al.  Toward Sustainable Synthesis of PA12 (Nylon-12) Precursor from Oleic Acid Using Ring-Closing Metathesis , 2016 .

[16]  Karol Grela,et al.  Metathesis@MOF: Simple and Robust Immobilization of Olefin Metathesis Catalysts inside (Al)MIL-101-NH2 , 2016 .

[17]  Y. Hayashi,et al.  Time Economical Total Synthesis of (-)-Oseltamivir. , 2016, Organic letters.

[18]  John D. Hayler,et al.  Updating and further expanding GSK's solvent sustainability guide , 2016 .

[19]  Richard L. Pederson,et al.  Scalable Methods for the Removal of Ruthenium Impurities from Metathesis Reaction Mixtures , 2016 .

[20]  P. Pérez,et al.  Homogeneous Metal-Based Catalysis in Supercritical Carbon Dioxide as Reaction Medium , 2016 .

[21]  Volodymyr Sashuk,et al.  A Thermo- and Photo-Switchable Ruthenium Initiator For Olefin Metathesis. , 2016, Chemistry.

[22]  Justin A M Lummiss,et al.  Olefin Metathesis at the Dawn of Implementation in Pharmaceutical and Specialty-Chemicals Manufacturing. , 2016, Angewandte Chemie.

[23]  I. Goldberg,et al.  A Light-Activated Olefin Metathesis Catalyst Equipped with a Chromatic Orthogonal Self-Destruct Function. , 2016, Angewandte Chemie.

[24]  J. G. Vries,et al.  Why Does Industry Not Use Immobilized Transition Metal Complexes as Catalysts , 2016 .

[25]  Yujiro Hayashi,et al.  Pot economy and one-pot synthesis , 2016, Chemical science.

[26]  K. Grela,et al.  Effective immobilisation of a metathesis catalyst bearing an ammonium-tagged NHC ligand on various solid supports , 2016, Beilstein journal of organic chemistry.

[27]  Hassan S. Bazzi,et al.  Synthesis of Polypentenamer and Poly(Vinyl Alcohol) with a Phase‐Separable Polyisobutylene‐Supported Second‐Generation Hoveyda–Grubbs Catalyst , 2016 .

[28]  J. Morzycki,et al.  New metathesis catalyst bearing chromanyl moieties at the N-heterocyclic carbene ligand , 2015, Beilstein journal of organic chemistry.

[29]  K. Grela,et al.  High-Performance Isocyanide Scavengers for Use in Low-Waste Purification of Olefin Metathesis Products , 2015, ChemSusChem.

[30]  J. Čejka,et al.  Ru complexes of Hoveyda–Grubbs type immobilized on lamellar zeolites: activity in olefin metathesis reactions , 2015, Beilstein journal of organic chemistry.

[31]  S. Nolan,et al.  Olefin metathesis in air , 2015, Beilstein journal of organic chemistry.

[32]  W. P. Gallagher,et al.  Dithiocarbamates: Reagents for the Removal of Transition Metals from Organic Reaction Media , 2015 .

[33]  John D. Hayler,et al.  CHEM21 selection guide of classical- and less classical-solvents , 2016 .

[34]  Hassan S. Bazzi,et al.  Polyethylene as a Cosolvent and Catalyst Support in Ring-Opening Metathesis Polymerization , 2015 .

[35]  Y. Kato,et al.  Effective Method To Remove Metal Elements from Pharmaceutical Intermediates with Polychelated Resin Scavenger , 2015 .

[36]  D. E. Fogg,et al.  Decomposition of a Phosphine-Free Metathesis Catalyst by Amines and Other Bronsted Bases: Metallacyclobutane Deprotonation as a Major Deactivation Pathway , 2015 .

[37]  W. R. Jackson,et al.  Divergent Approach to a Family of Tyrosine-Derived Ru-Alkylidene Olefin Metathesis Catalysts. , 2015, The Journal of organic chemistry.

[38]  X. Marat,et al.  Flash-metathesis for the coupling of sustainable (poly)hydroxyl β-methylstyrenes from essential oils , 2015 .

[39]  J. Pastva,et al.  Exceptionally Stable and Efficient Solid Supported Hoveyda-Type Catalyst , 2015 .

[40]  W. R. Jackson,et al.  A simple and practical preparation of an efficient water soluble olefin metathesis catalyst , 2015 .

[41]  C. Cazin,et al.  Conducting Olefin Metathesis Reactions in Air: Breaking the Paradigm , 2015 .

[42]  Jeremy P. Scott,et al.  Synthesis of bis-macrocyclic HCV protease inhibitor MK-6325 via intramolecular sp²-sp³ Suzuki-Miyaura coupling and ring closing metathesis. , 2015, Organic letters.

[43]  V. Boyarskiy,et al.  Metal-mediated and metal-catalyzed reactions of isocyanides. , 2015, Chemical reviews.

[44]  Davin Tan,et al.  Mechanochemical ruthenium-catalyzed olefin metathesis. , 2015, Journal of the American Chemical Society.

[45]  J. R. Griffiths,et al.  Removal of Palladium from Cross‐Coupling Reactions Using Isocyanide Reagents , 2015 .

[46]  R. Grubbs,et al.  Cyclic alkyl amino carbene (CAAC) ruthenium complexes as remarkably active catalysts for ethenolysis. , 2015, Angewandte Chemie.

[47]  C. Zhong,et al.  The effect of silica-coating on catalyst recyclability in ionic magnetic nanoparticle-supported Grubbs–Hoveyda catalysts for ring-closing metathesis , 2015 .

[48]  Jing Zhao,et al.  First acyclic diene metathesis polymerization under biphasic conditions using a dicationic ruthenium alkylidene: access to high-molecular-weight polymers with very low ruthenium contamination. , 2015, Macromolecular rapid communications.

[49]  Gyorgy Szekely,et al.  Molecular separation with organic solvent nanofiltration: a critical review. , 2014, Chemical reviews.

[50]  M. Dranka,et al.  Chelating ruthenium phenolate complexes: synthesis, general catalytic activity, and applications in olefin metathesis polymerization. , 2014, Chemistry.

[51]  John D. Hayler,et al.  A survey of solvent selection guides , 2014 .

[52]  K. Grela,et al.  Towards “cleaner” olefin metathesis: tailoring the NHC ligand of second generation ruthenium catalysts to afford auxiliary traits , 2014 .

[53]  C. Zhong,et al.  Supported ruthenium-carbene catalyst on ionic magnetic nanoparticles for olefin metathesis. , 2014, Organic letters.

[54]  J. Čejka,et al.  Ru-Based Complexes with Quaternary Ammonium Tags Immobilized on Mesoporous Silica as Olefin Metathesis Catalysts , 2014 .

[55]  F. Fleming,et al.  Catalytic Isonitrile Insertions and Condensations Initiated by RNC-X Complexation. , 2014, Advanced synthesis & catalysis.

[56]  K. Grela Olefin Metathesis: Theory and Practice , 2014 .

[57]  F. Giacalone,et al.  Cross-Linked Imidazolium Salts as Scavengers for Palladium. , 2014, ChemPlusChem.

[58]  H. Neumann,et al.  How Important are Impurities in Catalysis? An Example from Ring‐Closing Metathesis , 2014 .

[59]  T. Olszewski,et al.  An attempt to provide an environmentally friendly solvent selection guide for olefin metathesis , 2014 .

[60]  P. Knapkiewicz,et al.  Tube-in-tube reactor as a useful tool for homo- and heterogeneous olefin metathesis under continuous flow mode. , 2014, ChemSusChem.

[61]  M. Smolen,et al.  2-Methyltetrahydrofuran: Sustainable solvent for ruthenium-catalyzed olefin metathesis , 2014 .

[62]  Camila P. Ferraz,et al.  Ionic Grubbs–Hoveyda Complexes for Biphasic Ring‐Opening Metathesis Polymerization in Ionic Liquids: Access to Low Metal Content Polymers , 2014 .

[63]  H. Schanz Stimuli-Responsive Olefin Metathesis Catalysts , 2013 .

[64]  S. Diver,et al.  Removal of ruthenium using a silica gel supported reagent. , 2013, Organic letters.

[65]  M. Buchmeiser,et al.  Ionically Tagged Ru–Alkylidenes for Metathesis Reactions under Biphasic Liquid–Liquid Conditions , 2013 .

[66]  T. Renouard,et al.  Comparison of two nanofiltration membrane reactors for a model reaction of olefin metathesis achieved in toluene , 2013 .

[67]  T. Olszewski,et al.  Efficient, durable and reusable olefin metathesis catalysts with high affinity to silica gel , 2013 .

[68]  J. Schatz,et al.  Olefin metathesis in aqueous media , 2013 .

[69]  K. Grela,et al.  Low Catalyst Loadings in Self-Metathesis of 1-Dodecene , 2013 .

[70]  B. Maes,et al.  Palladium-catalyzed migratory insertion of isocyanides: an emerging platform in cross-coupling chemistry. , 2013, Angewandte Chemie.

[71]  T. Renouard,et al.  Interest of the Precatalyst Design for Olefin Metathesis Operating in a Discontinuous Nanofiltration Membrane Reactor. , 2013, ChemPlusChem.

[72]  K. Grela,et al.  Synthesis of functionalised N-heterocyclic carbene ligands bearing a long spacer and their use in olefin metathesis. , 2013, Dalton transactions.

[73]  M. Mauduit,et al.  Ruthenium-based complexes containing a benzimidazolium tag covalently connected to N-heterocyclic carbene ligands: environmentally friendly catalysts for olefin metathesis transformations. , 2013, Dalton transactions.

[74]  C. Senanayake,et al.  A highly convergent and efficient synthesis of a macrocyclic hepatitis C virus protease inhibitor BI 201302. , 2013, Organic letters.

[75]  H. Plenio,et al.  Fast Olefin Metathesis: Synthesis of 2‐Aryloxy‐Substituted Hoveyda‐Type Complexes and Application in Ring‐Closing Metathesis , 2013 .

[76]  D. J. Nelson,et al.  Synergic Effects Between N-Heterocyclic Carbene and Chelating Benzylidene–Ether Ligands Toward the Initiation Step of Hoveyda–Grubbs Type Ru Complexes , 2013 .

[77]  R. Kadyrov Low catalyst loading in ring-closing metathesis reactions. , 2013, Chemistry.

[78]  A. Livingston,et al.  Batchwise and continuous nanofiltration of POSS-tagged Grubbs-Hoveyda-type olefin metathesis catalysts. , 2013, ChemSusChem.

[79]  C. Vogt,et al.  A fast-initiating ionically tagged ruthenium complex: a robust supported pre-catalyst for batch-process and continuous-flow olefin metathesis. , 2012, Chemistry.

[80]  K. Grela,et al.  Easily removable olefin metathesis catalysts , 2012 .

[81]  K. Grela,et al.  Highly active catalysts for olefin metathesis in water , 2012 .

[82]  Jean Martínez,et al.  Comprehensive study on olefin metathesis in PEG as an alternative solvent under microwave irradiation , 2012 .

[83]  Hassan S. Bazzi,et al.  A phase‐separable second‐generation hoveyda‐grubbs catalyst for ring‐opening metathesis polymerization , 2012 .

[84]  D. Bergbreiter,et al.  Polyethylene as a nonvolatile solid cosolvent phase for catalyst separation and recovery. , 2012, Journal of the American Chemical Society.

[85]  G. Vougioukalakis Removing ruthenium residues from olefin metathesis reaction products. , 2012, Chemistry.

[86]  J. Janey,et al.  Synthesis of the HCV protease inhibitor Vaniprevir (MK-7009) using ring-closing metathesis strategy. , 2012, The Journal of organic chemistry.

[87]  W. R. Jackson,et al.  Electrostatic immobilization of an olefin metathesis pre-catalyst on iron oxide magnetic particles , 2012 .

[88]  Leopold N. Green,et al.  Screening Binary Systems of Chelating Agents Combined with Carbon or Silica Gel Adsorbents: The Development of a Cost-Effective Method to Remove Palladium from Pharmaceutical Intermediates and APIs , 2011 .

[89]  Hassan S. Bazzi,et al.  Thermomorphic polyethylene-supported olefin metathesis catalysts. , 2011, Organic letters.

[90]  F. Rominger,et al.  A Set of Olefin Metathesis Catalysts with Extraordinary Stickiness to Silica , 2011 .

[91]  Cédric Fischmeister,et al.  Cross-metathesis transformations of terpenoids in dialkyl carbonate solvents , 2011 .

[92]  Alois Fürstner,et al.  Metathesis in total synthesis. , 2011, Chemical communications.

[93]  A. Rawlett,et al.  Methods for removal of residual catalyst from polymers prepared by ring opening metathesis polymerization , 2010 .

[94]  Irena Pulko,et al.  Removal of an olefin metathesis catalyst using 4-nitrophenyl acrylate based polymer supports , 2010 .

[95]  Jean Martínez,et al.  Ring-closing metathesis in glycerol under microwave activation , 2010 .

[96]  S. Marx,et al.  Separation of different metathesis grubbs-type catalysts using organic solvent nanofiltration , 2010 .

[97]  R. Grubbs,et al.  Ruthenium-based heterocyclic carbene-coordinated olefin metathesis catalysts. , 2010, Chemical reviews.

[98]  Richard L. Pederson,et al.  Low catalyst loadings in olefin metathesis: synthesis of nitrogen heterocycles by ring-closing metathesis. , 2010, Organic letters.

[99]  I. R. Morgan,et al.  A simple oxidative procedure for the removal of ruthenium residues from metathesis reaction products , 2010 .

[100]  M. Meier,et al.  A simple approach to reduce the environmental impact of olefin metathesis reactions: a green and renewable solvent compared to solvent-free reactions , 2010 .

[101]  L. Weidong,et al.  Di(ethylene glycol) vinyl ether: a highly efficient deactivating reagent for olefin metathesis catalysts , 2009 .

[102]  Yinghuai Zhu,et al.  Magnetic Nanoparticle Supported Second Generation Hoveyda–Grubbs Catalyst for Metathesis of Unsaturated Fatty Acid Esters , 2009 .

[103]  Wenzhao Li,et al.  Magnetic nanoparticle-supported Hoveyda-Grubbs catalysts for ring-closing metathesis reactions. , 2009, Chemical communications.

[104]  jin-quan yu,et al.  Palladium(II)-catalyzed C-H activation/C-C cross-coupling reactions: versatility and practicality. , 2009, Angewandte Chemie.

[105]  K. Grela,et al.  Ruthenium-based olefin metathesis catalysts bearing N-heterocyclic carbene ligands. , 2009, Chemical reviews.

[106]  R. Schrock Recent advances in high oxidation state Mo and W imido alkylidene chemistry. , 2009, Chemical reviews.

[107]  K. Ebert,et al.  Batchwise and continuous organophilic nanofiltration of Grubbs-type olefin metathesis catalysts. , 2009, Chemistry.

[108]  Xudong Wei,et al.  Second-Generation Process for the HCV Protease Inhibitor BILN 2061: A Greener Approach to Ru-Catalyzed Ring-Closing Metathesis† , 2009 .

[109]  Hassan S. Bazzi,et al.  Polyisobutylene-anchored N-heterocyclic carbene ligands. , 2009, Organic letters.

[110]  K. Grela,et al.  Aqueous olefin metathesis. , 2009, Angewandte Chemie.

[111]  Anna Grela Initiation at Snails Pace: Design and Applications of Latent Olefin Metathesis Catalysts Featuring Chelating Alkylidene Ligands , 2008 .

[112]  T. Renouard,et al.  Recovery of enlarged olefin metathesis catalysts by nanofiltration in an eco-friendly solvent. , 2008, ChemSusChem.

[113]  P. Śledź,et al.  Olefin metathesis in ionic liquids. , 2008, Chemical Society reviews.

[114]  C. Bruneau,et al.  Dimethyl carbonate: an eco-friendly solvent in ruthenium-catalyzed olefin metathesis transformations. , 2008, ChemSusChem.

[115]  M. Mitchell,et al.  Optimization and Scale-Up of a Suzuki−Miyaura Coupling Reaction: Development of an Efficient Palladium Removal Technique , 2008 .

[116]  Shu Yu,et al.  Development of an Effective Palladium Removal Process for VEGF Oncology Candidate AG13736 and a Simple, Efficient Screening Technique for Scavenger Reagent Identification , 2008 .

[117]  C. Adjiman,et al.  Solvents for ring-closing metathesis reactions. , 2008, Chemical communications.

[118]  P. Śledź,et al.  Olefin metathesis in water using acoustic emulsification , 2008 .

[119]  K. Grela,et al.  A highly active aqueous olefin metathesis catalyst bearing a quaternary ammonium group. , 2008, ChemSusChem.

[120]  A. Hoveyda,et al.  The remarkable metal-catalysed olefin metathesis reaction , 2007, Nature.

[121]  A. Kirschning,et al.  Sustainable concepts in olefin metathesis. , 2007, Angewandte Chemie.

[122]  Jason P. Jordan and,et al.  Small-Molecule N-Heterocyclic-Carbene-Containing Olefin-Metathesis Catalysts for Use in Water† , 2007 .

[123]  R. Grubbs,et al.  Efficient removal of ruthenium byproducts from olefin metathesis products by simple aqueous extraction. , 2007, Organic letters.

[124]  Steven H. Szczepankiewicz,et al.  A rapid and simple cleanup procedure for metathesis reactions. , 2007, Organic letters.

[125]  K. Grela,et al.  Advanced fine-tuning of grubbs/hoveyda olefin metathesis catalysts: a further step toward an optimum balance between antinomic properties. , 2006, Journal of the American Chemical Society.

[126]  Xudong Wei,et al.  Efficient large-scale synthesis of BILN 2061, a potent HCV protease inhibitor, by a convergent approach based on ring-closing metathesis. , 2006, The Journal of organic chemistry.

[127]  A. Kirschning,et al.  A green catalyst for green chemistry: Synthesis and application of an olefin metathesis catalyst bearing a quaternary ammonium group , 2006 .

[128]  A. Barrett,et al.  A simple, short, and flexible synthesis of viridiofungin derivatives. , 2006, The Journal of organic chemistry.

[129]  C. Crudden,et al.  Functionalized mesoporous silicates for the removal of ruthenium from reaction mixtures. , 2006, Organic letters.

[130]  K. Grela,et al.  A simple and practical phase-separation approach to the recycling of a homogeneous metathesis catalyst. , 2006, Chemical communications.

[131]  R. Grubbs,et al.  Prevention of undesirable isomerization during olefin metathesis. , 2005, Journal of the American Chemical Society.

[132]  Milan Gembicky,et al.  Carbon monoxide-promoted carbene insertion into the aryl substituent of an N-heterocyclic carbene ligand: Buchner reaction in a ruthenium carbene complex. , 2005, Journal of the American Chemical Society.

[133]  J. L. Snelgrove,et al.  Highly efficient Ru-pseudohalide catalysts for olefin metathesis. , 2005, Journal of the American Chemical Society.

[134]  K. Nicolaou,et al.  Palladium-catalyzed cross-coupling reactions in total synthesis. , 2005, Angewandte Chemie.

[135]  K. Nicolaou,et al.  Metathesis reactions in total synthesis. , 2005, Angewandte Chemie.

[136]  Thomas Nicola,et al.  First Scale-Up to Production Scale of a Ring Closing Metathesis Reaction Forming a 15-Membered Macrocycle as a Precursor of an Active Pharmaceutical Ingredient , 2005 .

[137]  R. Grubbs,et al.  Latent ruthenium olefin metathesis catalysts that contain an N-heterocyclic carbene ligand , 2004 .

[138]  Volodymyr Sashuk,et al.  Nitro-substituted Hoveyda-Grubbs ruthenium carbenes: enhancement of catalyst activity through electronic activation. , 2004, Journal of the American Chemical Society.

[139]  B. Schmidt Catalysis at the Interface of Ruthenium Carbene and Ruthenium Hydride Chemistry: Organometallic Aspects and Applications to Organic Synthesis , 2004 .

[140]  R. Breinbauer,et al.  An efficient and inexpensive scavenger resin for Grubbs' catalyst , 2004 .

[141]  R. Schrock,et al.  Molybdenum and tungsten imido alkylidene complexes as efficient olefin-metathesis catalysts. , 2003, Angewandte Chemie.

[142]  M. Mauduit,et al.  An ionic liquid-supported ruthenium carbene complex: a robust and recyclable catalyst for ring-closing olefin metathesis in ionic liquids. , 2003, Journal of the American Chemical Society.

[143]  B. Kim,et al.  An efficient method for removal of ruthenium byproducts from olefin metathesis reactions. , 2003, Organic letters.

[144]  Richard L. Pederson,et al.  Applications of Olefin Cross Metathesis to Commercial Products , 2002 .

[145]  W. Leitner,et al.  Olefin metathesis in supercritical carbon dioxide. , 2001, Journal of the American Chemical Society.

[146]  G. Georg,et al.  A convenient method for the efficient removal of ruthenium byproducts generated during olefin metathesis reactions. , 2001, Organic letters.

[147]  A. Hoveyda,et al.  Efficient and Recyclable Monomeric and Dendritic Ru-Based Metathesis Catalysts , 2000 .

[148]  Paquette,et al.  A convenient method for removing all highly-colored byproducts generated during olefin metathesis reactions , 2000, Organic letters.

[149]  R. Grubbs,et al.  Synthesis and activity of a new generation of ruthenium-based olefin metathesis catalysts coordinated with 1,3-dimesityl-4,5-dihydroimidazol-2-ylidene ligands. , 1999, Organic letters.

[150]  R. Grubbs,et al.  Purification technique for the removal of ruthenium from olefin metathesis reaction products , 1999 .

[151]  R. Grubbs,et al.  Increased ring closing metathesis activity of ruthenium-based olefin metathesis catalysts coordinated with imidazolin-2-ylidene ligands , 1999 .

[152]  Jinkun Huang,et al.  Olefin Metathesis-Active Ruthenium Complexes Bearing a Nucleophilic Carbene Ligand , 1999 .

[153]  Norio Miyaura,et al.  Palladium-Catalyzed Cross-Coupling Reactions of Organoboron Compounds , 1995 .

[154]  P. Anastas,et al.  Green Chemistry , 2018, Environmental Science.