Factoring polynomials over global fields

Nous demontrons une complexite polynomiale en temps pour l'algorithme de van Hoeij de factorisation de polynomes univaries a coefficients rationnels, ainsi que pour des variantes naturelles. En particulier, notre approche fournit aussi une complexite polynomiale pour les polynomes bivaries sur un corps fini.

[1]  László Lovász,et al.  Factoring polynomials with rational coefficients , 1982 .

[2]  Éric Schost,et al.  Complexity issues in bivariate polynomial factorization , 2004, ISSAC '04.

[3]  M. Mignotte,et al.  Polynomials: An Algorithmic Approach , 1999 .

[4]  H. Zassenhaus On Hensel factorization, I , 1969 .

[5]  Michael E. Pohst,et al.  Factoring polynomials over global fields I , 2005, J. Symb. Comput..

[6]  Jeffrey C. Lagarias,et al.  Polynomial Time Algorithms for Finding Integer Relations Among Real Numbers , 1989, STACS.

[7]  John J. Cannon,et al.  The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..

[8]  Victor S. Miller,et al.  Factoring Polynomials via Relation-Finding , 1992, ISTCS.

[9]  Karim Belabas,et al.  A relative van Hoeij algorithm over number fields , 2004, J. Symb. Comput..

[10]  Arjen K. Lenstra,et al.  Lattices and Factorization of Polynomials over Algebraic Number Fields , 1982, EUROCAM.

[11]  R. Gregory Taylor,et al.  Modern computer algebra , 2002, SIGA.

[12]  Damien Stehlé,et al.  Floating-Point LLL Revisited , 2005, EUROCRYPT.

[13]  Michael Pohst,et al.  Algorithmic algebraic number theory , 1989, Encyclopedia of mathematics and its applications.

[14]  Tateaki Sasaki,et al.  A unified method for multivariate polynomial factorizations , 1993 .

[15]  Michael E. Pohst,et al.  Factoring polynomials over global fields II , 2005, J. Symb. Comput..

[16]  M. V. Hoeij Factoring Polynomials and the Knapsack Problem , 2002 .

[17]  K. Mahler On the zeros of the derivative of a polynomial , 1961, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.