Semi-classical limit of the Levy-Lieb functional in Density Functional Theory

In a recent work, Bindini and De Pascale have introduced a regularization of $N$-particle symmetric probabilities which preserves their one-particle marginals. In this short note, we extend their construction to mixed quantum fermionic states. This enables us to prove the convergence of the Levy-Lieb functional in Density Functional Theory , to the corresponding multi-marginal optimal transport in the semi-classical limit. Our result holds for mixed states of any particle number $N$, with or without spin.

[1]  J. Myrheim,et al.  On the theory of identical particles , 1977 .

[2]  P. Gori-Giorgi,et al.  Electronic Zero-Point Oscillations in the Strong-Interaction Limit of Density Functional Theory. , 2008, Journal of chemical theory and computation.

[3]  E. Cancès,et al.  Computational quantum chemistry: A primer , 2003 .

[4]  Codina Cotar,et al.  Infinite-body optimal transport with Coulomb cost , 2013, Calculus of Variations and Partial Differential Equations.

[5]  S. Ouvry Anyons and lowest Landau level Anyons , 2007, 0712.2174.

[6]  Simone Di Marino,et al.  The strictly-correlated electron functional for spherically symmetric systems revisited , 2017, 1702.05022.

[7]  C. Villani Optimal Transport: Old and New , 2008 .

[8]  C. Villani The founding fathers of optimal transport , 2009 .

[9]  L. Pascale,et al.  Optimal transport with Coulomb cost and the semiclassical limit of Density Functional Theory , 2017, 1702.04957.

[10]  J. E. Harriman Orthonormal orbitals for the representation of an arbitrary density , 1981 .

[11]  Codina Cotar,et al.  Density Functional Theory and Optimal Transportation with Coulomb Cost , 2011, 1104.0603.

[12]  M. Levy Universal variational functionals of electron densities, first-order density matrices, and natural spin-orbitals and solution of the v-representability problem. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Simone Di Marino,et al.  Equality between Monge and Kantorovich multimarginal problems with Coulomb cost , 2015 .

[14]  P. Hohenberg,et al.  Inhomogeneous electron gas , 1964 .

[15]  G. Buttazzo,et al.  Optimal-transport formulation of electronic density-functional theory , 2012, 1205.4514.

[16]  Elliott H. Lieb,et al.  Density Functionals for Coulomb Systems , 1983 .

[17]  Claudia Klüppelberg,et al.  N-density representability and the optimal transport limit of the Hohenberg-Kohn functional. , 2013, The Journal of chemical physics.

[18]  Thierry Champion,et al.  Continuity and Estimates for Multimarginal Optimal Transportation Problems with Singular Costs , 2016, 1608.08780.

[19]  Simone Di Marino,et al.  Optimal transportation theory with repulsive costs , 2015, 1506.04565.