Patterns of item nonresponse behaviour to survey questionnaires are systematic and associated with genetic loci

[1]  F. Dudbridge,et al.  Adjusting for collider bias in genetic association studies using instrumental variable methods , 2022, Genetic epidemiology.

[2]  Michael F. Green,et al.  Mapping genomic loci implicates genes and synaptic biology in schizophrenia , 2022, Nature.

[3]  A. Kong,et al.  The Genetics of Participation: Method and Analysis , 2022, bioRxiv.

[4]  P. Visscher,et al.  Genome-wide analyses of behavioural traits are subject to bias by misreports and longitudinal changes , 2021, Nature communications.

[5]  D. Belsky,et al.  Investigating the genetic architecture of non-cognitive skills using GWAS-by-subtraction , 2021, Nature Genetics.

[6]  J. Huang Representativeness is not representative: Addressing major inferential threats in the UK Biobank and other big data repositories. , 2020, Epidemiology.

[7]  M. Daly,et al.  A missense variant in SLC39A8 confers risk for Crohn’s disease by disrupting manganese homeostasis and intestinal barrier integrity , 2020, Proceedings of the National Academy of Sciences.

[8]  Sarah E. Williams,et al.  The schizophrenia risk locus in SLC39A8 alters brain metal transport and plasma glycosylation , 2020, Scientific Reports.

[9]  J. Sterne,et al.  Collider bias undermines our understanding of COVID-19 disease risk and severity , 2020, Nature Communications.

[10]  Pietro Della Briotta Parolo,et al.  Genetic analyses identify widespread sex-differential participation bias , 2020, Nature Genetics.

[11]  Lars G Fritsche,et al.  An analytic framework for exploring sampling and observation process biases in genome and phenome‐wide association studies using electronic health records , 2020, Statistics in medicine.

[12]  J. Tyrrell,et al.  Genetic predictors of participation in optional components of UK Biobank , 2020, Nature Communications.

[13]  Lars G Fritsche,et al.  The emerging landscape of health research based on biobanks linked to electronic health records: Existing resources, statistical challenges, and potential opportunities , 2019, Statistics in medicine.

[14]  Stuart J. Ritchie,et al.  Edinburgh Research Explorer Genome-wide analysis identifies molecular systems and 149 genetic loci associated with income , 2022 .

[15]  I. Deary,et al.  Factors associated with sharing e-mail information and mental health survey participation in large population cohorts , 2019, International journal of epidemiology.

[16]  C. Tzourio,et al.  “I don’t know”, “I’m not sure”, “I don’t want to answer”: a latent class analysis explaining the informative value of nonresponse options in an online survey on youth health , 2019, International Journal of Social Research Methodology.

[17]  D. Westreich,et al.  UK Biobank, big data, and the consequences of non-representativeness , 2019, The Lancet.

[18]  Robert M. Maier,et al.  Polygenic adaptation on height is overestimated due to uncorrected stratification in genome-wide association studies , 2019, eLife.

[19]  Stuart J. Ritchie,et al.  Genomic SEM Provides Insights into the Multivariate Genetic Architecture of Complex Traits , 2019, Nature Human Behaviour.

[20]  N. Pearce,et al.  Baseline selection on a collider: a ubiquitous mechanism occurring in both representative and selected cohort studies , 2019, Journal of Epidemiology & Community Health.

[21]  D. Lawson,et al.  Apparent latent structure within the UK Biobank sample has implications for epidemiological analysis , 2019, Nature Communications.

[22]  Louisa H Smith,et al.  Bounding Bias Due to Selection , 2018, Epidemiology.

[23]  C. Cruchaga,et al.  A missense variant in SLC39A8 is associated with severe idiopathic scoliosis , 2018, Nature Communications.

[24]  Anthony J. Payne,et al.  Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps , 2018, Nature Genetics.

[25]  P. Donnelly,et al.  The UK Biobank resource with deep phenotyping and genomic data , 2018, Nature.

[26]  Emmanuel Curis,et al.  Heckman imputation models for binary or continuous MNAR outcomes and MAR predictors , 2018, BMC Medical Research Methodology.

[27]  Jonathan P. Beauchamp,et al.  Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals , 2018, Nature Genetics.

[28]  Tyrone D. Cannon,et al.  Genome-wide association meta-analysis in 269,867 individuals identifies new genetic and functional links to intelligence , 2018, Nature Genetics.

[29]  D. Lawlor,et al.  Exploring the association of genetic factors with participation in the Avon Longitudinal Study of Parents and Children , 2018, International journal of epidemiology.

[30]  Ian J. Deary,et al.  Association analysis in over 329,000 individuals identifies 116 independent variants influencing neuroticism , 2017, Nature Genetics.

[31]  D. Posthuma,et al.  Functional mapping and annotation of genetic associations with FUMA , 2017, Nature Communications.

[32]  C. Sudlow,et al.  Comparison of Sociodemographic and Health-Related Characteristics of UK Biobank Participants With Those of the General Population , 2017, American journal of epidemiology.

[33]  Hermine H Maes,et al.  GW-SEM: A Statistical Package to Conduct Genome-Wide Structural Equation Modeling , 2017, Behavior genetics.

[34]  Christopher I. Amos,et al.  Two-stage genome-wide association study identifies a novel susceptibility locus associated with melanoma , 2017, Oncotarget.

[35]  Evan Z. Macosko,et al.  Heritability enrichment of specifically expressed genes identifies disease-relevant tissues and cell types , 2017, Nature Genetics.

[36]  David M. Evans,et al.  Collider scope: when selection bias can substantially influence observed associations , 2016, bioRxiv.

[37]  Alan M. Kwong,et al.  Next-generation genotype imputation service and methods , 2016, Nature Genetics.

[38]  L. Wain,et al.  Haplotype estimation for biobank scale datasets , 2016, Nature Genetics.

[39]  M. O’Donovan,et al.  Association of Genetic Risk for Schizophrenia With Nonparticipation Over Time in a Population-Based Cohort Study , 2016, American journal of epidemiology.

[40]  Jonathan P. Beauchamp,et al.  Genome-wide association study identifies 74 loci associated with educational attainment , 2016, Nature.

[41]  R. Marioni,et al.  Molecular Genetic Contributions to Social Deprivation and Household Income in UK Biobank , 2016, Current Biology.

[42]  J. Marchini,et al.  A multiple phenotype imputation method for genetic studies , 2016, Nature Genetics.

[43]  P. Visscher,et al.  Modeling Linkage Disequilibrium Increases Accuracy of Polygenic Risk Scores , 2015, bioRxiv.

[44]  Gabor T. Marth,et al.  A global reference for human genetic variation , 2015, Nature.

[45]  Tom R. Gaunt,et al.  The UK10K project identifies rare variants in health and disease , 2015, Nature.

[46]  Yakir A Reshef,et al.  Partitioning heritability by functional annotation using genome-wide association summary statistics , 2015, Nature Genetics.

[47]  Jun S. Liu,et al.  The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans , 2015, Science.

[48]  M. Daly,et al.  An Atlas of Genetic Correlations across Human Diseases and Traits , 2015, Nature Genetics.

[49]  Michael Q. Zhang,et al.  Integrative analysis of 111 reference human epigenomes , 2015, Nature.

[50]  J. Hirschhorn,et al.  Biological interpretation of genome-wide association studies using predicted gene functions , 2015, Nature Communications.

[51]  C. Wijmenga,et al.  Gene expression analysis identifies global gene dosage sensitivity in cancer , 2015, Nature Genetics.

[52]  C. Spencer,et al.  Biological Insights From 108 Schizophrenia-Associated Genetic Loci , 2014, Nature.

[53]  M. Ikeda,et al.  Item non-response on self-reported depression screening questionnaire among community-dwelling elderly. , 2014, Journal of affective disorders.

[54]  J. Anaya,et al.  Socioeconomic status. The relationship with health and autoimmune diseases. , 2014, Autoimmunity reviews.

[55]  J. Berkson Limitations of the application of fourfold table analysis to hospital data. , 2014, International journal of epidemiology.

[56]  M. Daly,et al.  LD Score regression distinguishes confounding from polygenicity in genome-wide association studies , 2014, Nature Genetics.

[57]  R. Young,et al.  Super-Enhancers in the Control of Cell Identity and Disease , 2013, Cell.

[58]  An Gie Yong,et al.  A Beginner's Guide to Factor Analysis: Focusing on Exploratory Factor Analysis , 2013 .

[59]  C. Y. Peng,et al.  Principled missing data methods for researchers , 2013, SpringerPlus.

[60]  Andrey Peytchev,et al.  Consequences of Survey Nonresponse , 2013 .

[61]  B. Stranger,et al.  Chromatin marks identify critical cell types for fine mapping complex trait variants , 2012, Nature Genetics.

[62]  Andrew Smolen,et al.  The National Longitudinal Study of Adolescent Health (Add Health) Sibling Pairs Data , 2012, Twin Research and Human Genetics.

[63]  Espen Røysamb,et al.  Attrition and generalizability in longitudinal studies: findings from a 15-year population-based study and a Monte Carlo simulation study , 2012, BMC Public Health.

[64]  J. Swanson The UK Biobank and selection bias , 2012, The Lancet.

[65]  Raymond K. Auerbach,et al.  An Integrated Encyclopedia of DNA Elements in the Human Genome , 2012, Nature.

[66]  Yves Rosseel,et al.  lavaan: An R Package for Structural Equation Modeling , 2012 .

[67]  Peter M Bentler,et al.  Exploratory Bi-factor Analysis: The Oblique Case , 2012, Psychometrika.

[68]  M. Kals,et al.  Assessing non-response to a mailed health survey including self-collection of biological material. , 2011, European journal of public health.

[69]  K. Tambs,et al.  Alcohol use and mental distress as predictors of non-response in a general population health survey: the HUNT study , 2011, Social Psychiatry and Psychiatric Epidemiology.

[70]  Ting Yan,et al.  The Relation Between Unit Nonresponse and Item Nonresponse: A Response Continuum Perspective , 2010 .

[71]  S. Reise,et al.  Bifactor Models and Rotations: Exploring the Extent to Which Multidimensional Data Yield Univocal Scale Scores , 2010, Journal of personality assessment.

[72]  P. Kraft,et al.  Genome‐wide association scans for secondary traits using case‐control samples , 2009, Genetic epidemiology.

[73]  P. Donnelly,et al.  A Flexible and Accurate Genotype Imputation Method for the Next Generation of Genome-Wide Association Studies , 2009, PLoS genetics.

[74]  Manuel A. R. Ferreira,et al.  PLINK: a tool set for whole-genome association and population-based linkage analyses. , 2007, American journal of human genetics.

[75]  Brian D. Johnson,et al.  Is the Magic Still There? The Use of the Heckman Two-Step Correction for Selection Bias in Criminology , 2007 .

[76]  Norbert Schwarz,et al.  Cognitive aspects of survey methodology , 2007 .

[77]  T. Forrester,et al.  Factors affecting study efficiency and item non-response in health surveys in developing countries: the Jamaica national healthy lifestyle survey , 2007 .

[78]  Vic Hasselblad,et al.  Can one assess whether missing data are missing at random in medical studies? , 2006, Statistical methods in medical research.

[79]  Roderick J. A. Little,et al.  Statistical Analysis with Missing Data: Little/Statistical Analysis with Missing Data , 2002 .

[80]  M. Clarke,et al.  Increasing response rates to postal questionnaires: systematic review , 2002, BMJ : British Medical Journal.

[81]  Patrick A. Puhani,et al.  The Heckman Correction for Sample Selection and Its Critique - A Short Survey , 2000 .

[82]  K. Zimmermann,et al.  PSEUDO‐R2 MEASURES FOR SOME COMMON LIMITED DEPENDENT VARIABLE MODELS , 1996 .

[83]  Donald Tomaskovic-Devey,et al.  Organizational Survey Nonresponse , 1994 .

[84]  J. Elder,et al.  Item non-response to lifestyle assessment in an elderly cohort. , 1994, International journal of epidemiology.

[85]  P D Cleary,et al.  Age-related item nonresponse in surveys of recently discharged patients. , 1992, Journal of gerontology.

[86]  Barbara B. Flynn,et al.  Empirical research methods in operations management , 1990 .

[87]  R B Wallace,et al.  Data quality and age: health and psychobehavioral correlates of item nonresponse and inconsistent responses. , 1989, Journal of gerontology.

[88]  John M. McCann,et al.  Item Nonresponse in Mail Surveys: Extent and Correlates , 1978 .

[89]  L. Guttman,et al.  Statistical Adjustment of Data , 1944 .

[90]  A. Bauman,et al.  Is Cohort Study Representativeness Passé?  Matching the UK Biobank Sample to Target Population Characteristics and Recalculating the Associations between Lifestyle Risk Factors and Mortality , 2020, SSRN Electronic Journal.

[91]  Brady T. West,et al.  Selective nonresponse bias in population-based survey estimates of drug use behaviors in the United States , 2015, Social Psychiatry and Psychiatric Epidemiology.

[92]  M. McQueen,et al.  The National Longitudinal Study of Adolescent to Adult Health (Add Health) Sibling Pairs Genome-Wide Data , 2015, Behavior genetics.

[93]  Melissa C. Greven,et al.  An integrated encyclopedia of DNA elements in the human genome , 2014 .

[94]  van de Mortel,et al.  Faking it: Social desirability response bias in self-report research , 2008 .

[95]  Randy W. Kamphaus,et al.  The Wechsler Intelligence Scale for Children—Third Edition (WISC-III) , 2005 .

[96]  J. Hox,et al.  Prevention and treatment of item nonresponse. , 2003 .

[97]  G. Loosveldt,et al.  Item nonresponse as a predictor of unit nonresponse in a panel survey , 1999 .

[98]  J. Heckman Sample selection bias as a specification error , 1979 .