Initial breakup of supercontinent Rodinia as recorded by ca 860–840 Ma bimodal volcanism along the southeastern margin of the Yangtze Block, South China

[1]  S. Wilde,et al.  Origin of arc-like continental basalts: Implications for deep-Earth fluid cycling and tectonic discrimination , 2016 .

[2]  P. Roux,et al.  The oxygen isotope composition of Karoo and Etendeka picrites: High δ18O mantle or crustal contamination? , 2015, Contributions to Mineralogy and Petrology.

[3]  S. Wilde,et al.  Continental flood basalts derived from the hydrous mantle transition zone , 2015, Nature Communications.

[4]  D. Frizon de Lamotte,et al.  Style of rifting and the stages of Pangea breakup , 2015 .

[5]  Peter A. Cawood,et al.  Neoproterozoic to early Paleozoic extensional and compressional history of East Laurentian margin sequences: The Moine Supergroup, Scottish Caledonides , 2015 .

[6]  Daniel J. Smith Clinopyroxene precursors to amphibole sponge in arc crust , 2014, Nature Communications.

[7]  R. Carlson,et al.  Subduction-modified oceanic crust mixed with a depleted mantle reservoir in the sources of the Karoo continental flood basalt province , 2014 .

[8]  M. Wingate,et al.  Genesis of the 1.21 Ga Marnda Moorn large igneous province by plume-lithosphere interaction , 2014 .

[9]  D. Evans Reconstructing pre-Pangean supercontinents , 2013 .

[10]  Peter A. Cawood,et al.  Geochronological, geochemical and Nd-Hf-Os isotopic fingerprinting of an early Neoproterozoic arc-back-arc system in South China and its accretionary assembly along the margin of Rodinia , 2013 .

[11]  W. Fan,et al.  Early Neoproterozoic (̃850Ma) back-arc basin in the Central Jiangnan Orogen (Eastern South China): Geochronological and petrogenetic constraints from meta-basalts , 2013 .

[12]  J. Blundy,et al.  Compositional gaps in igneous rock suites controlled by magma system heat and water content , 2013 .

[13]  Katherine A. Kelley,et al.  Along-Arc Variations in the Pre-Eruptive H2O Contents of Mariana Arc Magmas Inferred from Fractionation Paths , 2011 .

[14]  Xian‐Hua Li,et al.  Ca. 850 Ma bimodal volcanic rocks in northeastern Jiangxi Province, South China: Initial extension during the breakup of Rodinia? , 2010, American Journal of Science.

[15]  Y. Liu,et al.  The Willouran basic province of South Australia: Its relation to the Guibei large igneous province in South China and the breakup of Rodinia , 2010 .

[16]  O. Bachmann,et al.  Quantum magmatism: Magmatic compositional gaps generated by melt-crystal dynamics , 2010 .

[17]  Xian‐Hua Li,et al.  Precise U–Pb and Pb–Pb dating of Phanerozoic baddeleyite by SIMS with oxygen flooding technique , 2010 .

[18]  C. Clark,et al.  Magmatic and metamorphic events during the early Paleozoic Wuyi-Yunkai orogeny, southeastern South China: New age constraints and pressure-temperature conditions , 2010 .

[19]  Peter A. Cawood,et al.  The generation and evolution of the continental crust , 2010, Journal of the Geological Society.

[20]  S. Carey,et al.  Role of cryptic amphibole crystallization in magma differentiation at Hudson volcano, Southern Volcanic Zone, Chile , 2010 .

[21]  Yue-heng Yang,et al.  Amalgamation between the Yangtze and Cathaysia Blocks in South China: Constraints from SHRIMP U–Pb zircon ages, geochemistry and Nd–Hf isotopes of the Shuangxiwu volcanic rocks , 2009 .

[22]  G. Gehrels,et al.  Late Proterozoic–Paleozoic evolution of the Arctic Alaska–Chukotka terrane based on U-Pb igneous and detrital zircon ages: Implications for Neoproterozoic paleogeographic reconstructions , 2009 .

[23]  Xian‐Hua Li,et al.  Variable involvements of mantle plumes in the genesis of mid-Neoproterozoic basaltic rocks in South China: A review , 2009 .

[24]  Xian‐Hua Li,et al.  Precise determination of Phanerozoic zircon Pb/Pb age by multicollector SIMS without external standardization , 2009 .

[25]  Xiaolei Wang,et al.  Geochronology of Neoproterozoic mafic rocks and sandstones from northeastern Guizhou, South China: Coeval arc magmatism and sedimentation , 2009 .

[26]  P. Ulmer,et al.  Igneous garnet and amphibole fractionation in the roots of island arcs: experimental constraints on andesitic liquids , 2009 .

[27]  Yue-heng Yang,et al.  The Bikou basalts in the northwestern Yangtze block, South China: Remnants of 820-810 Ma continental flood basalts? , 2008 .

[28]  Guochun Zhao,et al.  Geochronology and Hf isotopes of zircon from volcanic rocks of the Shuangqiaoshan Group, South China: implications for the Neoproterozoic tectonic evolution of the eastern Jiangnan orogen , 2008 .

[29]  Xian‐Hua Li,et al.  Middle Neoproterozoic syn-rifting volcanic rocks in Guangfeng, South China: petrogenesis and tectonic significance , 2008, Geological Magazine.

[30]  Y. Liu,et al.  850-790 Ma bimodal volcanic and intrusive rocks in northern Zhejiang, South China: A major episode of continental rift magmatism during the breakup of Rodinia , 2008 .

[31]  Xian‐Hua Li,et al.  Obduction-type granites within the NE Jiangxi Ophiolite: Implications for the final amalgamation between the Yangtze and Cathaysia Blocks , 2008 .

[32]  M. Whitehouse,et al.  Plesovice zircon : A new natural reference material for U-Pb and Hf isotopic microanalysis , 2008 .

[33]  A. Glazner,et al.  The tenuous connection between high-silica rhyolites and granodiorite plutons , 2008 .

[34]  S. Pisarevsky,et al.  Palaeoproterozoic to Neoproterozoic growth and evolution of the eastern Congo Craton: Its role in the Rodinia puzzle , 2008 .

[35]  K. Karlstrom,et al.  Assembly, configuration, and break-up history of Rodinia: A synthesis , 2008 .

[36]  Xian‐Hua Li,et al.  Ca. 825 Ma komatiitic basalts in South China: First evidence for >1500 °C mantle melts by a Rodinian mantle plume , 2007 .

[37]  Mei-Fu Zhou,et al.  Neoproterozoic Adakitic Plutons and Arc Magmatism along the Western Margin of the Yangtze Block, South China , 2007, The Journal of Geology.

[38]  Y. Liu,et al.  SHRIMP zircon U–Pb geochronological and whole-rock geochemical evidence for an early Neoproterozoic Sibaoan magmatic arc along the southeastern margin of the Yangtze Block , 2007 .

[39]  U. Schärer,et al.  Major and Trace Element and Sr, Nd, Hf, and Pb Isotope Compositions of the Karoo Large Igneous Province, Botswana-Zimbabwe: Lithosphere vs Mantle Plume Contribution , 2007 .

[40]  C. Yuan,et al.  U-Pb zircon, geochemical and Sr-Nd-Hf isotopic constraints on age and origin of Jurassic I- and A-type granites from central Guangdong, SE China: A major igneous event in response to foundering of a subducted flat-slab? , 2007 .

[41]  J. Milton,et al.  Geochronology of the Zambezi Supracrustal Sequence, Southern Zambia: A Record of Neoproterozoic Divergent Processes along the Southern Margin of the Congo Craton , 2007, The Journal of Geology.

[42]  J. Dostal,et al.  Continental mafic magmatism of different ages in the same terrane: Constraints on the evolution of an enriched mantle source , 2007 .

[43]  Mei-Fu Zhou,et al.  Geochemistry of Neoproterozoic mafic intrusions in the Panzhihua district (Sichuan Province, SW China): Implications for subduction-related metasomatism in the upper mantle , 2007 .

[44]  Katherine A. Kelley,et al.  Mantle melting as a function of water content beneath back-arc basins , 2006 .

[45]  Xiaolei Wang,et al.  LA-ICP-MS U-Pb zircon geochronology of the Neoproterozoic igneous rocks from Northern Guangxi, South China: Implications for tectonic evolution , 2006 .

[46]  Mei-Fu Zhou,et al.  The Yanbian Terrane (Southern Sichuan Province, SW China): A Neoproterozoic arc assemblage in the western margin of the Yangtze Block , 2006 .

[47]  T. Rivers,et al.  A review of the Mesoproterozoic to early Palaeozoic magmatic and tectonothermal history of south–central Africa: implications for Rodinia and Gondwana , 2005, Journal of the Geological Society.

[48]  F. Bussy,et al.  Insights into shallow magmatic processes in large silicic magma bodies: the trace element record in the Fish Canyon magma body, Colorado , 2005 .

[49]  Xian‐Hua Li,et al.  Neoproterozoic bimodal magmatism in the Cathaysia Block of South China and its tectonic significance , 2005 .

[50]  K. Condie Supercontinents and superplume events: distinguishing signals in the geologic record , 2004 .

[51]  R. Korsch,et al.  of a trace-element-related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards , 2004 .

[52]  Y. Liu,et al.  Precise Sm–Nd and U–Pb isotopic dating of the supergiant Shizhuyuan polymetallic deposit and its host granite, SE China , 2004, Geological Magazine.

[53]  N. Eyles,et al.  'Zipper-rift': a tectonic model for Neoproterozoic glaciations during the breakup of Rodinia after 750 Ma , 2004 .

[54]  J. Korenaga Mantle mixing and continental breakup magmatism , 2004 .

[55]  A. Peccerillo,et al.  Relationships between mafic and peralkaline silicic magmatism in continental rift settings: A petrological, geochemical and isotopic study of the Gedemsa volcano, Central Ethiopian rift , 2003 .

[56]  B. Taylor,et al.  Back-arc basin basalt systematics , 2003 .

[57]  Xian‐Hua Li Neoproterozoic granitoids in South China: crustal melting above a mantle plume at ca. 825 Ma? , 2003 .

[58]  Zheng‐Xiang Li Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents: evidence for a mantle superplume that broke up Rodinia , 2003 .

[59]  L. Ying,et al.  SHRIMP U-Pb zircon age, geochemistry and Nd isotope of the Guandaoshan pluton in SW Sichuan: Petrogenesis and tectonic significance , 2003, Science in China Series D Earth Sciences.

[60]  P. Andréasson,et al.  Attempted break-up of Rodinia at 850 Ma: geochronological evidence from the Seve–Kalak Superterrane, Scandinavian Caledonides , 2002, Journal of the Geological Society.

[61]  J. Malpas,et al.  Neoproterozoic Arc‐Related Mafic Intrusions along the Northern Margin of South China: Implications for the Accretion of Rodinia , 2002, The Journal of Geology.

[62]  A. Hofmann,et al.  Boninite-like volcanic rocks in the 3.7–3.8 Ga Isua greenstone belt, West Greenland: geochemical evidence for intra-oceanic subduction zone processes in the early Earth , 2002 .

[63]  Mei-Fu Zhou,et al.  SHRIMP U-Pb zircon geochronological and geochemical evidence for Neoproterozoic arc-magmatism along the western margin of the Yangtze Block, South China. , 2002 .

[64]  Xian‐Hua Li,et al.  Grenvillian continental collision in South China: new SHRIMP U-Pb zircon results and implications for the configuration of Rodinia , 2002 .

[65]  M. Brasier,et al.  Did global tectonics drive early biosphere evolution? Carbon isotope record from 2.6 to 1.9 Ga carbonates of Western Australian basins , 2002 .

[66]  Y. Liu,et al.  U-Pb zircon geochronology, geochemistry and Nd isotopic study of Neoproterozoic bimodal volcanic rocks in the Kangdian Rift of South China : Implications for the initial rifting of Rodinia , 2002 .

[67]  J. Puffer Contrasting high field strength element contents of continental flood basalts from plume versus reactivated-arc sources , 2001 .

[68]  I. Dalziel,et al.  Neoproterozoic Extension on the Scottish Promontory of Laurentia: Paleogeographic and Tectonic Implications , 2001, The Journal of Geology.

[69]  Kazuya Takahashi,et al.  JNdi-1: a neodymium isotopic reference in consistency with LaJolla neodymium , 2000 .

[70]  A. Knoll,et al.  Chuar Group of the Grand Canyon: record of breakup of Rodinia, associated change in the global carbon cycle, and ecosystem expansion by 740 Ma. , 2000, Geology.

[71]  Xian‐Hua Li,et al.  The breakup of Rodinia: did it start with a mantle plume beneath South China? , 1999 .

[72]  I. Millar Neoproterozoic extensional basic magmatism associated with the West Highland granite gneiss in the Moine Supergroup of NW Scotland , 1999, Journal of the Geological Society.

[73]  B. Chappell Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites , 1999 .

[74]  K. Condie EPISODIC CONTINENTAL GROWTH AND SUPERCONTINENTS : A MANTLE AVALANCHE CONNECTION? , 1998 .

[75]  Halverson,et al.  A neoproterozoic snowball earth , 1998, Science.

[76]  B. Jahn,et al.  Crustal evolution of southeastern China: Nd and Sr isotopic evidence , 1998 .

[77]  A. L. Harris,et al.  Tectonostratigraphy of the Moine Supergroup: a synthesis , 1998, Journal of the Geological Society.

[78]  Xian‐Hua Li Geochemistry of the Longsheng Ophiolite from the southern margin of Yangtze Craton, SE China , 1997 .

[79]  R. Strachan,et al.  U-Pb zircon geochronological evidence for Neoproterozoic events in the Glenfinnan Group (Moine Supergroup): the formation of the Ardgour granite gneiss, north-west Scotland , 1997 .

[80]  K. Stewart,et al.  Mantle plumes, flood basalts, and thermal models for melt generation beneath continents: Assessment of a conductive heating model and application to the Paraná , 1996 .

[81]  F. Albarède,et al.  The 'Daly gap' as a magmatic catastrophe , 1995, Nature.

[82]  B. Storey The role of mantle plumes in continental breakup: case histories from Gondwanaland , 1995, Nature.

[83]  C. Powell,et al.  South China in Rodinia: Part of the missing link between Australia–East Antarctica and Laurentia? , 1995 .

[84]  W. Griffin,et al.  THREE NATURAL ZIRCON STANDARDS FOR U‐TH‐PB, LU‐HF, TRACE ELEMENT AND REE ANALYSES , 1995 .

[85]  C. Hawkesworth,et al.  The nature of the sub-continental mantle: constraints from the major-element composition of continental flood basalts , 1995 .

[86]  W. Bryan,et al.  The influence of water on the petrogenesis of subductionrelated igneous rocks , 1993, Nature.

[87]  E. Moores Southwest U.S.-East Antarctic (SWEAT) connection: A hypothesis , 1991 .

[88]  C. Devey,et al.  Source and Differentiation of Deccan Trap Lavas: Implications of Geochemical and Mineral Chemical Variations , 1990 .

[89]  Shui Tao TECTONIC FRAMEWORK OF THE CONTINENTAL BASEMENT OF SOUTHEAST CHINA , 1988 .

[90]  E. Zen Aluminum Enrichment in Silicate Melts by Fractional Crystallization: Some Mineralogic and Petrographic Constraints , 1986 .

[91]  G. Wasserburg,et al.  Sm-Nd isotopic evolution of chondrites and achondrites. II , 1984 .

[92]  I. Lucchitta,et al.  Origin of bimodal volcanism, southern Basin and Range province, west-central Arizona , 1983 .

[93]  John W. Shervais,et al.  Ti-V plots and the petrogenesis of modern and ophiolitic lavas , 1982 .

[94]  J. Pearce,et al.  Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks , 1979 .

[95]  D. Green,et al.  Integrated Models of Basalt Petrogenesis: A Study of Quartz Tholeiites to Olivine Melilitites from South Eastern Australia Utilizing Geochemical and Experimental Petrological Data , 1978 .

[96]  J. Kramers,et al.  Approximation of terrestrial lead isotope evolution by a two-stage model , 1975 .

[97]  A. Miyashiro Volcanic rock series in island arcs and active continental margins , 1974 .

[98]  F. Chayes On Pyroxene Molecules in the CIPW Norm , 1963, Geological Magazine.

[99]  W. Bohrson,et al.  Enriched continental flood basalts from depleted mantle melts: modeling the lithospheric contamination of Karoo lavas from Antarctica , 2015, Contributions to Mineralogy and Petrology.

[100]  L. Reisberg,et al.  Sr, Nd, Pb and Os Isotope Systematics of CAMP Tholeiites from Eastern North America (ENA): Evidence of a Subduction-enriched Mantle Source , 2014 .

[101]  M. Santosh,et al.  The supercontinent cycle: A retrospective essay , 2014 .

[102]  Yue-heng Yang,et al.  Petrogenesis and tectonic significance of the ~850 Ma Gangbian alkaline complex in South China: Evidence from in situ zircon U-Pb dating, Hf-O isotopes and whole-rock geochemistry , 2010 .

[103]  D. Evans The palaeomagnetically viable, long-lived and all-inclusive Rodinia supercontinent reconstruction , 2009 .

[104]  Zhang Chuan-heng SHRIMP U-Pb zircon dating of tuff in the Shuangqiaoshan and Heshangzhen groups in South China——constraints on the evolution of the Jiangnan Neoproterozoic orogenic belt , 2008 .

[105]  P. Kelemen,et al.  One View of the Geochemistry of Subduction-Related Magmatic Arcs, with an Emphasis on Primitive Andesite and Lower Crust , 2005 .

[106]  K. Condie Supercontinents, superplumes and continental growth: the Neoproterozoic record , 2003, Geological Society, London, Special Publications.

[107]  K. Ludwig User's Manual for Isoplot 3.00 - A Geochronological Toolkit for Microsoft Excel , 2003 .

[108]  D. Groves,et al.  First evidence of >3.2 Ga continental crust in the Yangtze craton of south China and its implications for Archean crustal evolution and Phanerozoic tectonics , 2000 .

[109]  N. Rogers,et al.  Paraná magmatism and the opening of the South Atlantic , 1992, Geological Society, London, Special Publications.

[110]  W. McDonough,et al.  Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes , 1989, Geological Society, London, Special Publications.

[111]  A. Saunders,et al.  Geochemical characteristics of basaltic volcanism within back-arc basins , 1984, Geological Society, London, Special Publications.

[112]  J. Winchester,et al.  Geochemical discrimination of different magma series and their differentiation products using immobile elements , 1977 .

[113]  J. Winchester,et al.  Geochemical magma type discrimination: application to altered and metamorphosed basic igneous rocks , 1976 .