Fast likelihood-free cosmology with neural density estimators and active learning

Likelihood-free inference provides a framework for performing rigorous Bayesian inference using only forward simulations, properly accounting for all physical and observational effects that can be successfully included in the simulations. The key challenge for likelihood-free applications in cosmology, where simulation is typically expensive, is developing methods that can achieve high-fidelity posterior inference with as few simulations as possible. Density-estimation likelihood-free inference (DELFI) methods turn inference into a density estimation task on a set of simulated data-parameter pairs, and give orders of magnitude improvements over traditional Approximate Bayesian Computation approaches to likelihood-free inference. In this paper we use neural density estimators (NDEs) to learn the likelihood function from a set of simulated datasets, with active learning to adaptively acquire simulations in the most relevant regions of parameter space on-the-fly. We demonstrate the approach on a number of cosmological case studies, showing that for typical problems high-fidelity posterior inference can be achieved with just $\mathcal {O}(10^3)$ simulations or fewer. In addition to enabling efficient simulation-based inference, for simple problems where the form of the likelihood is known, DELFI offers a fast alternative to MCMC sampling, giving orders of magnitude speed-up in some cases. Finally, we introduce pydelfi – a flexible public implementation of DELFI with NDEs and active learning – available at https://github.com/justinalsing/pydelfi.

[1]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[2]  B. Yegnanarayana,et al.  Artificial Neural Networks , 2004 .

[3]  T. Kitching,et al.  The limits of cosmic shear , 2016, 1611.04954.

[4]  S. Tsujikawa Disformal invariance of cosmological perturbations in a generalized class of Horndeski theories , 2014, 1412.6210.

[5]  A. N. Pettitt,et al.  Approximate Bayesian Computation for astronomical model analysis: a case study in galaxy demographics and morphological transformation at high redshift , 2012, 1202.1426.

[6]  L. Witkowski,et al.  Monodromy Dark Matter , 2016, 1605.01367.

[7]  W. M. Wood-Vasey,et al.  LIKELIHOOD-FREE COSMOLOGICAL INFERENCE WITH TYPE Ia SUPERNOVAE: APPROXIMATE BAYESIAN COMPUTATION FOR A COMPLETE TREATMENT OF UNCERTAINTY , 2012, 1206.2563.

[8]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[9]  Gilles Louppe,et al.  A guide to constraining effective field theories with machine learning , 2018, Physical Review D.

[10]  F. Davies,et al.  Large fluctuations in the high-redshift metagalactic ionizing background , 2016, 1611.02711.

[11]  Benjamin Dan Wandelt,et al.  Massive optimal data compression and density estimation for scalable, likelihood-free inference in cosmology , 2018, 1801.01497.

[12]  Wayne Hu Dark Synergy: Gravitational Lensing and the CMB , 2001 .

[13]  W. M. Wood-Vasey,et al.  TYPE Ia SUPERNOVA LIGHT-CURVE INFERENCE: HIERARCHICAL BAYESIAN ANALYSIS IN THE NEAR-INFRARED , 2009, 0908.0536.

[14]  Florent Leclercq,et al.  Bayesian optimization for likelihood-free cosmological inference , 2018, Physical Review D.

[15]  L. Waerbeke,et al.  Shear and magnification: cosmic complementarity , 2009, 0906.1583.

[16]  Gutti Jogesh Babu,et al.  Statistical Challenges in Modern Astronomy IV , 1998 .

[17]  Martín Abadi,et al.  TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems , 2016, ArXiv.

[18]  Jean-Luc Starck,et al.  On the dissection of degenerate cosmologies with machine learning , 2018, Monthly Notices of the Royal Astronomical Society.

[19]  David W. Hogg,et al.  Approximate Bayesian computation in large-scale structure : constraining the galaxy-halo connection , 2016, 1607.01782.

[20]  J. Pritchard,et al.  Emulation of reionization simulations for Bayesian inference of astrophysics parameters using neural networks , 2017, 1708.00011.

[21]  Gilles Louppe,et al.  Mining gold from implicit models to improve likelihood-free inference , 2018, Proceedings of the National Academy of Sciences.

[22]  O. Ilbert,et al.  The many flavours of photometric redshifts , 2018, Nature Astronomy.

[23]  C. Heymans,et al.  Baryons, neutrinos, feedback and weak gravitational lensing , 2014, 1407.4301.

[24]  N. Kern,et al.  Emulating Simulations of Cosmic Dawn for 21 cm Power Spectrum Constraints on Cosmology, Reionization, and X-Ray Heating , 2017, 1705.04688.

[25]  N. Kaiser Weak Lensing and Cosmology , 1996, astro-ph/9610120.

[26]  Elise Jennings,et al.  A New Approach for Obtaining Cosmological Constraints from Type Ia Supernovae using Approximate Bayesian Computation , 2016, 1611.03087.

[27]  A. Amara,et al.  Accelerating Approximate Bayesian Computation with Quantile Regression: application to cosmological redshift distributions , 2017, 1707.07498.

[28]  Istv'an Csabai,et al.  Learning from deep learning: better cosmological parameter inference from weak lensing maps , 2018, 1806.05995.

[29]  K. Gorski,et al.  HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere , 2004, astro-ph/0409513.

[30]  Nasser M. Nasrabadi,et al.  Pattern Recognition and Machine Learning , 2006, Technometrics.

[31]  Edward Higson,et al.  Bayesian sparse reconstruction: a brute-force approach to astronomical imaging and machine learning , 2018, Monthly Notices of the Royal Astronomical Society.

[32]  A. Simone,et al.  Spontaneous baryogenesis without baryon isocurvature , 2016, 1610.05783.

[33]  Nitish Srivastava,et al.  Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..

[34]  S. Dodelson,et al.  Extreme data compression for the CMB , 2015, 1512.00072.

[35]  Morgan May,et al.  Probing cosmology with weak lensing peak counts , 2009, 0907.0486.

[36]  Douglas H. Rudd,et al.  The Astrophysical Journal, submitted Preprint typeset using L ATEX style emulateapj v. 08/29/06 EFFECTS OF BARYONS AND DISSIPATION ON THE MATTER POWER SPECTRUM , 2007 .

[37]  A. Heavens,et al.  Hierarchical cosmic shear power spectrum inference , 2015, 1505.07840.

[38]  Earl Lawrence,et al.  THE COYOTE UNIVERSE EXTENDED: PRECISION EMULATION OF THE MATTER POWER SPECTRUM , 2013, 1304.7849.

[39]  Kyle Barbary,et al.  UNITY: CONFRONTING SUPERNOVA COSMOLOGY’S STATISTICAL AND SYSTEMATIC UNCERTAINTIES IN A UNIFIED BAYESIAN FRAMEWORK , 2015, 1507.01602.

[40]  Masahiro Takada,et al.  Cosmological parameters from lensing power spectrum and bispectrum tomography , 2003, astro-ph/0310125.

[41]  A. Heavens,et al.  Weak lensing with sizes, magnitudes and shapes , 2014, 1410.7839.

[42]  Bruce A. Peterson,et al.  On the Density of Neutral Hydrogen in Intergalactic Space , 1965 .

[43]  Benjamin D. Wandelt,et al.  Automatic physical inference with information maximising neural networks , 2018, 1802.03537.

[44]  Duncan A. Brown,et al.  Investigating the noise residuals around the gravitational wave event GW150914 , 2018, Journal of Cosmology and Astroparticle Physics.

[45]  J. Dunlop,et al.  Inferring the mass of submillimetre galaxies by exploiting their gravitational magnification of background galaxies , 2012, 1212.2650.

[46]  Hendrik Hildebrandt,et al.  On the complementarity of galaxy clustering with cosmic shear and flux magnification , 2013, 1306.6870.

[47]  M. Kawasaki,et al.  A new algorithm for calculating the curvature perturbations in stochastic inflation , 2013, 1308.4754.

[48]  Benjamin D. Wandelt,et al.  Optimal proposals for Approximate Bayesian Computation. , 2018, 1808.06040.

[49]  Justin Bayer,et al.  Bayesian Learning of Neural Network Architectures , 2019, AISTATS.

[50]  L. Verde,et al.  Bayesian emulator optimisation for cosmology: application to the Lyman-alpha forest , 2018, Journal of Cosmology and Astroparticle Physics.

[51]  Gilles Louppe,et al.  Constraining Effective Field Theories with Machine Learning. , 2018, Physical review letters.

[52]  L. Amendola,et al.  H0 from cosmic chronometers and Type Ia supernovae, with Gaussian Processes and the novel Weighted Polynomial Regression method , 2018, The Fifteenth Marcel Grossmann Meeting.

[53]  Bradley Greig,et al.  Deep learning from 21-cm tomography of the Cosmic Dawn and Reionization , 2019, Monthly Notices of the Royal Astronomical Society.

[54]  Min Du,et al.  Probing the Neutrino Mass Hierarchy beyond ΛCDM Model , 2017, Journal of Cosmology and Astroparticle Physics.

[55]  Roberto Scaramella,et al.  Origins of weak lensing systematics, and requirements on future instrumentation (or knowledge of instrumentation) , 2012, 1210.7690.

[56]  Catherine Heymans,et al.  The skewed weak lensing likelihood: why biases arise, despite data and theory being sound , 2017, 1712.04923.

[57]  A. Amara,et al.  Weak lensing peak statistics in the era of large scale cosmological surveys , 2018, Journal of Cosmology and Astroparticle Physics.

[58]  E. Bertin,et al.  Inferring the photometric and size evolution of galaxies from image simulations , 2017, 1704.05559.

[59]  O. Lahav,et al.  Massive lossless data compression and multiple parameter estimation from galaxy spectra , 1999, astro-ph/9911102.

[60]  T. Souradeep,et al.  Estimation of inflation parameters for Perturbed Power Law model using recent CMB measurements , 2014, 1410.8835.

[61]  M. Sasaki,et al.  Scalaron from R2-gravity as a heavy field , 2017, 1712.09896.

[62]  Michael U. Gutmann,et al.  Bayesian Optimization for Likelihood-Free Inference of Simulator-Based Statistical Models , 2015, J. Mach. Learn. Res..

[63]  Iain Murray,et al.  Sequential Neural Likelihood: Fast Likelihood-free Inference with Autoregressive Flows , 2018, AISTATS.

[64]  Jakob H. Macke,et al.  Likelihood-free inference with emulator networks , 2018, AABI.

[65]  Aki Vehtari,et al.  Efficient Acquisition Rules for Model-Based Approximate Bayesian Computation , 2017, Bayesian Analysis.

[66]  Martin Kilbinger,et al.  Cosmology with cosmic shear observations: a review , 2014, Reports on progress in physics. Physical Society.

[67]  F. Davies,et al.  Large fluctuations in the hydrogen-ionizing background and mean free path following the epoch of reionization , 2015, 1509.07131.

[68]  D. Gerdes,et al.  Steve: A Hierarchical Bayesian Model for Supernova Cosmology , 2018, The Astrophysical Journal.

[69]  Padhraic Smyth,et al.  Linearly Combining Density Estimators via Stacking , 1999, Machine Learning.

[70]  P. Berkes,et al.  Improved constraints on cosmological parameters from SNIa data , 2011, 1102.3237.

[71]  L. Verde,et al.  Is there evidence for additional neutrino species from cosmology , 2013, 1302.0014.

[72]  M. Viel,et al.  The Sherwood simulation suite: overview and data comparisons with the Lyman α forest at redshifts 2 ≤ z ≤ 5 , 2016, 1605.03462.

[73]  Jia Liu,et al.  Constraining neutrino mass with weak lensing Minkowski Functionals , 2018, Journal of Cosmology and Astroparticle Physics.

[74]  A. Heavens,et al.  Cosmological parameters, shear maps and power spectra from CFHTLenS using Bayesian hierarchical inference , 2016, 1607.00008.

[75]  Max Tegmark,et al.  Karhunen-Loève Eigenvalue Problems in Cosmology: How Should We Tackle Large Data Sets? , 1996, astro-ph/9603021.

[76]  Z. Luki'c,et al.  A New Method to Measure the Post-reionization Ionizing Background from the Joint Distribution of Lyα and Lyβ Forest Transmission , 2017, 1703.10174.

[77]  P. Murdin MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY , 2005 .

[78]  Nick Kaiser,et al.  Weak gravitational lensing of distant galaxies , 1992 .

[79]  J. Ellis,et al.  Intergalactic magnetic fields from first-order phase transitions , 2019, Journal of Cosmology and Astroparticle Physics.

[80]  D. Nelson Limber,et al.  The Analysis of Counts of the Extragalactic Nebulae in Terms of a Fluctuating Density Field. II , 1953 .

[81]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[82]  D. Barge,et al.  Machine learning accelerated likelihood-free event reconstruction in dark matter direct detection , 2018, Journal of Instrumentation.

[83]  Hugo Larochelle,et al.  Neural Autoregressive Distribution Estimation , 2016, J. Mach. Learn. Res..

[84]  Gutti Jogesh Babu,et al.  Statistical Challenges in Modern Astronomy , 1992 .

[85]  Michael I. Jordan,et al.  Advances in Neural Information Processing Systems 30 , 1995 .

[86]  Iain Murray,et al.  Sequential Neural Methods for Likelihood-free Inference , 2018, ArXiv.

[87]  L. Verde,et al.  An emulator for the Lyman-α forest , 2018, Journal of Cosmology and Astroparticle Physics.

[88]  R. B. Barreiro,et al.  Planck 2018 results , 2018, Astronomy & Astrophysics.

[89]  Daniel J. Hsu,et al.  Non-Gaussian information from weak lensing data via deep learning , 2018, ArXiv.

[90]  Thomas Hofmann,et al.  Cosmological constraints from noisy convergence maps through deep learning , 2018, Physical Review D.