The Victoria-Regina Stellar Models: Evolutionary Tracks and Isochrones for a Wide Range in Mass and Metallicity that Allow for Empirically Constrained Amounts of Convective Core Overshooting

Seventy-two grids of stellar evolutionary tracks, along with the means to generate isochrones and luminosity/color functions from them, are presented in this investigation. Sixty of them extend (and encompass) the sets of models reported by VandenBerg et al. for 17 [Fe/H] values from -2.31 to -0.30 and ?-element abundances corresponding to [?/Fe] = 0.0, 0.3, and 0.6 (at each iron abundance) to the solar metallicity and to sufficiently high masses (up to ~2.2 M?) that isochrones may be computed for ages as low as 1 Gyr. The remaining grids contain tracks for masses from 0.4 to 4.0 M? and 12 [Fe/H] values between -0.60 and +0.49 (assuming solar metal-to-hydrogen number abundance ratios): in this case, isochrones may be calculated down to ~0.2 Gyr. The extent of convective core overshooting has been modeled using a parameterized version of the Roxburgh criterion, in which the value of the free parameter at a given mass and its dependence on mass have been determined from analyses of binary star data and the observed color-magnitude diagrams for several open clusters. Because the calculations reported herein satisfy many empirical constraints, they should provide useful probes into the properties of both simple and complex stellar populations.

[1]  Roger A. Bell,et al.  The effective temperatures and colours of G and K stars , 1989 .

[2]  D. VandenBerg Models for Old, Metal-Poor Stars with Enhanced α-Element Abundances. II. Their Implications for the Ages of the Galaxy’s Globular Clusters and Field Halo Stars , 2000 .

[3]  Nathan D. Miller,et al.  Metallicities of Old Open Clusters , 2002 .

[4]  W. Jefferys,et al.  Astrometry with the Hubble Space Telescope: A Parallax of the Fundamental Distance Calibrator RR Lyrae , 2001, astro-ph/0110271.

[5]  P. R. Warren,et al.  Reddenings of Cepheids using BVI photometry , 1978 .

[6]  Models for solar abundance stars with gravitational settling and radiative accelerations: Application to M67 and NGC 188 , 2004, astro-ph/0402544.

[7]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[8]  E. Grebel,et al.  V, I CCD photometry of metal-rich globular clusters: NGC 6528 ? , 1998 .

[9]  Models of Metal-Poor Stars with Gravitational Settling and Radiative Accelerations , 2002 .

[10]  L. Infante,et al.  BV CCD photometry of the old open cluster NGC 2243 , 1991 .

[11]  J. Christensen-Dalsgaard,et al.  Effects of diffusion on solar models and their oscillation frequencies , 1993 .

[12]  C. Gallart,et al.  Testing Intermediate-Age Stellar Evolution Models with VLT Photometry of Large Magellanic Cloud Clusters. II. Analysis with the Yale Models , 2003 .

[13]  European Southern Observatory,et al.  A Step toward the Calibration of the Red Giant Branch Tip as a Standard Candle , 2001, astro-ph/0104114.

[14]  Sergio Ortolani,et al.  The White Dwarf Distance to the Globular Cluster NGC 6752 (and Its Age) with the HUBBLE SPACE TELESCOPE , 1996, astro-ph/9604179.

[15]  Taft E. Armandroff,et al.  Standard Globular Cluster Giant Branches in the (M(I), (V - I)o) Plane , 1990 .

[16]  R. Claudi,et al.  Metal Abundances of Red Clump Stars in Open Clusters. I. NGC 6819 , 2000, astro-ph/0009321.

[17]  P. Eggleton,et al.  A critical test of stellar evolution and convective core ‘overshooting’ by means of ζ Aurigae systems , 1997 .

[18]  Michael J. West,et al.  The globular cluster system of the Galaxy. III: measurements of radial velocity and metallicity for 60 clusters and a compilation of metallicities for 121 clusters , 1984 .

[19]  Don A. VandenBerg,et al.  Empirically Constrained Color-Temperature Relations. I. BV(RI)C , 2003 .

[20]  H. M. Dyck,et al.  Radii and Effective Temperatures for G, K, and M Giants and Supergiants , 1996 .

[21]  J. Orosz,et al.  The Age of NGC 3680 and a Test of Convective Overshoot , 1997 .

[22]  R. G. Gratton,et al.  The O-Na and Mg-Al anticorrelations in turn-off and early subgiants in globular clusters , 2001 .

[23]  D. Latham,et al.  A PHOTOMETRIC AND RADIAL-VELOCITY ANALYSIS OF THE INTERMEDIATE-AGE OPEN CLUSTER NGC 752 , 1994 .

[24]  Y.-W. Lee,et al.  Toward Better Age Estimates for Stellar Populations: The Y2 Isochrones for Solar Mixture , 2001 .

[25]  uvbyCaHβ CCD Photometry of Clusters. V. The Metal-Deficient Open Cluster NGC 2243 , 2004, astro-ph/0410512.

[26]  D. Alexander,et al.  Models for Old, Metal-poor Stars with Enhanced α-Element Abundances. I. Evolutionary Tracks and ZAHB Loci; Observational Constraints , 2000 .

[27]  J. Thorburn,et al.  On the Metallicity and the Turnoff Temperature of M67 , 1991 .

[28]  A Multicolor and Fourier Study of RR Lyrae Variables in the Globular Cluster NGC 5272 (M3) , 2004, astro-ph/0409567.

[29]  P. Stetson,et al.  On the Old Open Clusters M67 and NGC 188: Convective Core Overshooting, Color‐Temperature Relations, Distances, and Ages , 2004 .

[30]  E. Guinan,et al.  Theory and Tests of Convection In Stellar Structure , 1999 .

[31]  R. G. Gratton,et al.  Abundances for globular cluster giants: I. homogeneous metallicities for 24 clusters , 1996, astro-ph/9607078.

[32]  Bruce W. Carney,et al.  THE CONSTANCY OF [ALPHA/FE] IN GLOBULAR CLUSTERS OF DIFFERING [FE/H] AND AGE , 1996 .

[33]  W. Hubbard,et al.  THERMAL CONDUCTION BY ELECTRONS IN STELLAR MATTER. , 1969 .

[34]  M. Bessell,et al.  Young Clusters in the Magellanic Clouds. II. , 2000, astro-ph/0011285.

[35]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[36]  L. Girardi,et al.  Evolutionary tracks and isochrones for low- and intermediate-mass stars: From 0.15 to 7 , and from to 0.03 , 1999, astro-ph/9910164.

[37]  N. Grevesse,et al.  Atomic data and the spectrum of the solar photosphere. , 1993 .

[38]  Danielle Alloin,et al.  Resolved Stellar Populations , 2003 .

[39]  L. Marschall,et al.  CCD photometry of the old open cluster M67 , 1993 .

[40]  V. Kozhurina-Platais,et al.  WIYN Open Cluster Study. II. UBVRI CCD Photometry of the Open Cluster NGC 188 , 1999 .

[41]  Judith G. Cohen,et al.  Infrared photometry of red giants in the globular cluster 47 Tucanae , 1981 .

[42]  Licai Deng,et al.  Nonlocal Time-dependent Convection Theory , 1997 .

[43]  P. Stetson,et al.  The Open Cluster NGC 7789. II. CCD VI Photometry , 1998, astro-ph/9808117.

[44]  E. Lastennet,et al.  Detached double-lined eclipsing binaries as critical tests of stellar evolution - Age and metallicity determinations from the HR diagram , 2002, astro-ph/0211501.

[45]  Laeff,et al.  Eclipsing Binaries as Astrophysical Laboratories: Internal Structure, Core Convection, and Evolution of the B-Star Components of V380 Cygni , 2000, astro-ph/0005029.

[46]  V. Canuto Turbulence in Stars. III. Unified Treatment of Diffusion, Convection, Semiconvection, Salt Fingers, and Differential Rotation , 1999 .

[47]  L. Girardi,et al.  Testing Intermediate-Age Stellar Evolution Models with VLT Photometry of Large Magellanic Cloud Clusters. III. Padova Results , 2002, astro-ph/0211169.

[48]  M. Fukugita,et al.  A Study of the B−V Color-Temperature Relation , 1999, astro-ph/9904299.

[49]  B. Edvardsson,et al.  Chemical composition of evolved stars in the open cluster NGC 7789 , 2005 .

[50]  S. Cassisi,et al.  A pulsational approach to the luminosity of horizontal branch stellar structures , 1998, astro-ph/9812379.

[51]  B. Paczynski,et al.  Cluster AgeS Experiment: The Age and Distance of the Globular Cluster ω Centauri Determined from Observations of the Eclipsing Binary OGLEGC 17 , 2000, astro-ph/0012493.

[52]  D. VandenBerg,et al.  BV Photometry for the ∼2.5 Gyr Open Cluster NGC 6819: More Evidence for Convective Core Overshooting on the Main Sequence , 1998 .

[53]  V. Canuto,et al.  Stellar Turbulent Convection. I. Theory , 1998 .

[54]  Johannes Andersen,et al.  Accurate masses and radii of normal stars , 1991 .

[55]  Don A. VandenBerg,et al.  Oxygen-enhanced Models for Globular Cluster Stars. II. Isochrones and Luminosity Functions , 1992 .

[56]  Empirically Constrained Color-Temperature Relations. II. uvby , 2003, astro-ph/0311458.

[57]  A. Bressan,et al.  New Developments in Understanding the HR Diagram , 1992 .

[58]  J. Richer,et al.  Models of metal poor stars with gravitational settling and radiative accelerations: I. evolution and abundance anomalies , 2002 .

[59]  Proton Capture Chains in Globular Cluster Stars. III. Abundances of Giants in the Second-Parameter Globular Cluster NGC 7006 , 1998 .

[60]  Models for Old, Metal-poor Stars with Enhanced α-Element Abundances. III. Isochrones and Isochrone Population Functions , 2001, astro-ph/0102480.

[61]  F. Rogers,et al.  Consistent Solar Evolution Model Including Diffusion and Radiative Acceleration Effects , 1998 .

[62]  F. Grundahl,et al.  The ages of the globular clusters M$\,$71 and 47 Tuc from Strömgren $uvby$ photometry - Evidence for high ages , 2002 .

[63]  I. Ribas,et al.  The mass dependence of the overshooting parameter determined from eclipsing binary data , 2000 .

[64]  R. Rich,et al.  The White Dwarf Distance to the Globular Cluster 47 Tucanae and its Age , 2001, astro-ph/0101485.

[65]  L. Girardi,et al.  Testing Intermediate-Age Stellar Evolution Models with VLT Photometry of Large Magellanic Cloud Clusters. I. The Data , 2002, astro-ph/0208188.

[66]  The Spite Lithium Plateau: Ultrathin but Postprimordial , 1999, astro-ph/9903059.