Sintering of bi-porous titanium dioxide scaffolds: Experimentation, modeling and simulation

[1]  Florencia Edith Wiria,et al.  Property enhancement of 3D-printed alumina ceramics using vacuum infiltration , 2014 .

[2]  Lei Wang,et al.  Ti3Si(Al)C2-based ceramics fabricated by reactive melt infiltration with Al70Si30 alloy , 2014 .

[3]  Hongbiao Dong,et al.  Porous alumina infiltrated with melt and its dynamic analysis during pressureless infiltration , 2014 .

[4]  M. Meyers,et al.  Bioinspired Scaffolds with Varying Pore Architectures and Mechanical Properties , 2014 .

[5]  Stefan Hengsbach,et al.  High-strength cellular ceramic composites with 3D microarchitecture , 2014, Proceedings of the National Academy of Sciences.

[6]  A. Bandyopadhyay,et al.  Bone tissue engineering using 3D printing , 2013 .

[7]  S. Deville Ice-templating, freeze casting: Beyond materials processing , 2013 .

[8]  M. Meyers,et al.  Biomimetic Materials by Freeze Casting , 2013 .

[9]  M. Meyers,et al.  Magnetic freeze casting inspired by nature , 2012 .

[10]  M. Fukushima,et al.  Macro-porous ceramics: processing and properties , 2012 .

[11]  Wenle Li,et al.  Freeze casting of porous materials: review of critical factors in microstructure evolution , 2012 .

[12]  Eduardo Saiz,et al.  Bioinspired Strong and Highly Porous Glass Scaffolds , 2011, Advanced functional materials.

[13]  Charles C. Sorrell,et al.  Review of the anatase to rutile phase transformation , 2011 .

[14]  E. Maire,et al.  Influence of Particle Size on Ice Nucleation and Growth During the Ice‐Templating Process , 2010, 1805.01354.

[15]  Anna Tampieri,et al.  From wood to bone: multi-step process to convert wood hierarchical structures into biomimetic hydroxyapatite scaffolds for bone tissue engineering , 2009 .

[16]  Fatih Dogan,et al.  Freeze casting of porous hydroxyapatite scaffolds. II. Sintering, microstructure, and mechanical behavior. , 2008, Journal of biomedical materials research. Part B, Applied biomaterials.

[17]  S. Deville Freeze‐Casting of Porous Ceramics: A Review of Current Achievements and Issues , 2008, 1710.04201.

[18]  Hyoun‐Ee Kim,et al.  Freezing Dilute Ceramic/Camphene Slurry for Ultra‐High Porosity Ceramics with Completely Interconnected Pore Networks , 2006 .

[19]  P. Bouvier,et al.  Hot compaction of nanocrystalline TiO2 (anatase) ceramics. Mechanisms of densification: Grain size and doping effects , 2006 .

[20]  André R. Studart,et al.  Processing Routes to Macroporous Ceramics: A Review , 2006 .

[21]  A. Kiejna,et al.  The energetics and structure of rutile TiO2(110) , 2006, Journal of physics. Condensed matter : an Institute of Physics journal.

[22]  Aldo R Boccaccini,et al.  45S5 Bioglass-derived glass-ceramic scaffolds for bone tissue engineering. , 2006, Biomaterials.

[23]  Eduardo Saiz,et al.  Freezing as a Path to Build Complex Composites , 2006, Science.

[24]  S. Hollister Porous scaffold design for tissue engineering , 2005, Nature materials.

[25]  J A Planell,et al.  Fabrication of low temperature macroporous hydroxyapatite scaffolds by foaming and hydrolysis of an alpha-TCP paste. , 2004, Biomaterials.

[26]  K. Peng,et al.  Electrophoretic deposition of porous hydroxyapatite scaffold. , 2003, Biomaterials.

[27]  Miqin Zhang,et al.  Preparation of porous hydroxyapatite scaffolds by combination of the gel-casting and polymer sponge methods. , 2003, Biomaterials.

[28]  R. Kandel,et al.  Porous calcium polyphosphate scaffolds for bone substitute applications in vivo studies. , 2002, Biomaterials.

[29]  Eugene A. Olevsky,et al.  Theory of sintering: from discrete to continuum , 1998 .

[30]  V. Skorokhod Development of the ideas of Ya. I. Frenkel' in the contemporary rheological theory of sintering , 1996 .

[31]  David R. Clarke,et al.  Interpenetrating Phase Composites , 1992 .

[32]  R. McMeeking,et al.  Creep of Power-Law Material Containing Spherical Voids , 1991 .

[33]  C. Körber,et al.  Interaction of particles and a moving ice-liquid interface , 1985 .

[34]  S. Timoshenko,et al.  Theory of elasticity , 1975 .

[35]  S. Timoshenko,et al.  Theory of Elasticity (3rd ed.) , 1970 .

[36]  Harlan U. Anderson,et al.  Initial Sintering of Rutile , 1967 .

[37]  J. A. Pask,et al.  Kinetics of the Anatase‐Rutile Transformation , 1965 .

[38]  W. Shao,et al.  The master sintering curve for pressure-less sintering of TiO2 , 2007 .

[39]  R. German Sintering theory and practice , 1996 .

[40]  E. Olevsky,et al.  Kinetics of sintering for powder systems with bimodal pore-size distribution , 1995 .

[41]  M. Shtern,et al.  Continuum theory of sintering. I. Phenomenological model. Analysis of the effect of external forces on the kinetics of sintering , 1993 .

[42]  R. German,et al.  A model for densification by sintering of bimodal particle size distributions , 1992 .