Genome-wide association study of classical Hodgkin lymphoma identifies key regulators of disease susceptibility

Karl-Heinz Jöckel | Julian Peto | K. D. Sørensen | Rosalind Eeles | Douglas Easton | Nick Orr | Asta Försti | Andreas Engert | Oleg Lenive | Per Hoffmann | Ali Amin Al Olama | Nora Pashayan | Federico Canzian | Hauke Thomsen | Kari Hemminki | Eleanor Kane | Eve Roman | Kenneth Muir | M. Nöthen | M. Kogevinas | S. Chanock | A. Wolk | R. Eeles | Z. Kote-Jarai | G. Giles | K. Muir | B. Henderson | J. Schleutker | J. Stanford | S. Ingles | E. John | C. Maier | R. Kaneva | J. Batra | D. Easton | C. Tangen | A. Kibel | P. Pharoah | J. Peto | D. Conti | N. Orr | P. Broderick | R. Houlston | D. Albanes | S. Weinstein | F. Schumacher | G. Cancel-Tassin | F. Wiklund | K. Hemminki | K. Jöckel | A. Dunning | B. Nordestgaard | H. Gronberg | M. Roobol | F. Menegaux | A. Swerdlow | S. Neuhausen | A. Försti | F. Canzian | F. Claessens | P. Law | V. Stevens | P. Hoffmann | K. Penney | T. Lightfoot | P. Townsend | D. Lessel | N. Usmani | B. Rosenstein | L. Mucci | H. Thomsen | Jeri Kim | L. Newcomb | Stella Koutros | S. Benlloch | R. Travis | N. Pashayan | C. Cybulski | M. Teixeira | M. Gago-Domínguez | L. Maehle | K. De Ruyck | C. West | A. Holroyd | O. Lenive | A. Sud | Giulia Orlando | R. Cooke | A. Engert | E. Roman | R. Jarrett | A. Lake | D. Montgomery | Paul Pharoah | Tracy Lightfoot | ZSofia Kote-Jarai | Alison Dunning | Peter Broderick | Anthony J. Swerdlow | Giulia Orlando | Amy Holroyd | Richard S. Houlston | Amit Sud | Philip J. Law | Miguel Inacio da Silva Filho | Lauren Wright | Rosie Cooke | Markus M. Nöthen | Elke Pogge von Strandmann | Annette Lake | Dorothy Montgomery | Ruth F. Jarrett | E. Kane | H. Brenner | Ana Vega | Lauren B Wright | A. Razack | M. I. S. Filho | E. P. Strandmann | D. E. Neal | Judith A. Clements | Jong Y. Park | Brian E. Christopher A. Sara Fredrick R. Ali Amin Al Son Henderson Haiman Benlloch Schumacher Olama | Sonja I. Berndt | C. Haiman | Yong-jie Lu | G. Cancel‐Tassin | R. Hamilton | D. Neal | A. Olama | Annette Lake | B. Henderson | M. Teixeira | Lisa F. Newcomb | Rosie Cooke | Dorothy Montgomery

[1]  K. D. Sørensen,et al.  Author Correction: Genome-wide association study of classical Hodgkin lymphoma identifies key regulators of disease susceptibility , 2019, Nature Communications.

[2]  M. Nöthen,et al.  A genome-wide association study identifies risk loci for childhood acute lymphoblastic leukemia at 10q26.13 and 12q23.1 , 2016, Leukemia.

[3]  Alexis Battle,et al.  Genetic variation in MHC proteins is associated with T cell receptor expression biases , 2016, Nature Genetics.

[4]  P. Visscher,et al.  Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets , 2016, Nature Genetics.

[5]  Daniel S. Himmelstein,et al.  Meta-analysis of genome-wide association studies reveals genetic overlap between Hodgkin lymphoma and multiple sclerosis , 2016, International journal of epidemiology.

[6]  J. Olsen,et al.  Familial risk of non-Hodgkin lymphoma by sex, relationship, age at diagnosis and histology: a joint study from five Nordic countries , 2016, Leukemia.

[7]  Manolis Kellis,et al.  HaploReg v4: systematic mining of putative causal variants, cell types, regulators and target genes for human complex traits and disease , 2015, Nucleic Acids Res..

[8]  Jonathan M. Cairns,et al.  CHiCAGO: robust detection of DNA looping interactions in Capture Hi-C data , 2015, Genome Biology.

[9]  Philip A. Ewels,et al.  HiCUP: pipeline for mapping and processing Hi-C data , 2015, F1000Research.

[10]  J. Olsen,et al.  Risk of familial classical Hodgkin lymphoma by relationship, histology, age, and sex: a joint study from five Nordic countries. , 2015, Blood.

[11]  J. Fellay,et al.  Amino Acid Variation in HLA Class II Proteins Is a Major Determinant of Humoral Response to Common Viruses , 2015, American journal of human genetics.

[12]  J. Rioux,et al.  Genetic association analyses implicate aberrant regulation of innate and adaptive immunity genes in the pathogenesis of systemic lupus erythematosus , 2015, Nature Genetics.

[13]  Casey S. Greene,et al.  International genome-wide meta-analysis identifies new primary biliary cirrhosis risk loci and targetable pathogenic pathways , 2015, Nature Communications.

[14]  Tom R. Gaunt,et al.  Improved imputation of low-frequency and rare variants using the UK10K haplotype reference panel , 2015, Nature Communications.

[15]  James T. Elder,et al.  Widespread non-additive and interaction effects within HLA loci modulate the risk of autoimmune diseases , 2015, Nature Genetics.

[16]  Philip A. Ewels,et al.  Mapping long-range promoter contacts in human cells with high-resolution capture Hi-C , 2015, Nature Genetics.

[17]  Christian Gieger,et al.  Association of CLEC16A with human common variable immunodeficiency disorder and role in murine B cells , 2015, Nature Communications.

[18]  Alexandra G. Smith,et al.  Lymphoma incidence, survival and prevalence 2004–2014: sub-type analyses from the UK's Haematological Malignancy Research Network , 2015, British Journal of Cancer.

[19]  K. Hemminki,et al.  Heritability estimates on Hodgkin’s lymphoma: a genomic- versus population-based approach , 2014, European Journal of Human Genetics.

[20]  M. Daly,et al.  LD Score regression distinguishes confounding from polygenicity in genome-wide association studies , 2014, Nature Genetics.

[21]  Gabriele Migliorini,et al.  visPIG - A Web Tool for Producing Multi-Region, Multi-Track, Multi-Scale Plots of Genetic Data , 2014, PloS one.

[22]  K. Basso,et al.  microRNA 28 controls cell proliferation and is down-regulated in B-cell lymphomas , 2014, Proceedings of the National Academy of Sciences.

[23]  C. Vinuesa,et al.  Control of TFH cell numbers: why and how? , 2014, Immunology and cell biology.

[24]  Jun S. Liu,et al.  Genetics of rheumatoid arthritis contributes to biology and drug discovery , 2013 .

[25]  P Boffetta,et al.  A Meta-Analysis of Hodgkin Lymphoma Reveals 19p13.3 TCF3 as a Novel Susceptibility Locus , 2013, Nature Communications.

[26]  Karl-Heinz Jöckel,et al.  Variation at 3p24.1 and 6q23.3 influences the risk of Hodgkin’s Lymphoma , 2013, Nature Communications.

[27]  M. Calaminici,et al.  Defining characteristics of classical Hodgkin lymphoma microenvironment T-helper cells. , 2013, Blood.

[28]  Buhm Han,et al.  Imputing Amino Acid Polymorphisms in Human Leukocyte Antigens , 2013, PloS one.

[29]  S. Jacobsen,et al.  Transcriptional Repression of Gata3 Is Essential for Early B Cell Commitment , 2013, Immunity.

[30]  Ellen T. Gelfand,et al.  The Genotype-Tissue Expression (GTEx) project , 2013, Nature Genetics.

[31]  W. Klapper,et al.  Analyzing primary Hodgkin and Reed-Sternberg cells to capture the molecular and cellular pathogenesis of classical Hodgkin lymphoma. , 2012, Blood.

[32]  R. Gascoyne,et al.  Gene expression profiling of microdissected Hodgkin Reed-Sternberg cells correlates with treatment outcome in classical Hodgkin lymphoma. , 2012, Blood.

[33]  Simon C. Potter,et al.  Mapping cis- and trans-regulatory effects across multiple tissues in twins , 2012, Nature Genetics.

[34]  Swneke D. Bailey,et al.  Breast cancer risk-associated SNPs modulate the affinity of chromatin for FOXA1 and alter gene expression , 2012, Nature Genetics.

[35]  Kristian Thorlund,et al.  Evolution of Heterogeneity (I2) Estimates and Their 95% Confidence Intervals in Large Meta-Analyses , 2012, PloS one.

[36]  H. Hjalgrim On the aetiology of Hodgkin lymphoma. , 2012, Danish medical journal.

[37]  Y. Kamatani,et al.  Genome-wide association study of classical Hodgkin lymphoma and Epstein-Barr virus status-defined subgroups. , 2012, Journal of the National Cancer Institute.

[38]  Avner Schlessinger,et al.  ICAHN SCHOOL OF MEDICINE AT MOUNT SINAI , 2012 .

[39]  Simon C. Potter,et al.  Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis , 2011, Nature.

[40]  Gonçalo R. Abecasis,et al.  The variant call format and VCFtools , 2011, Bioinform..

[41]  Edward P. Morris,et al.  Structural basis for the subunit assembly of the anaphase-promoting complex , 2011, Nature.

[42]  Tariq Ahmad,et al.  Meta-analysis identifies 29 additional ulcerative colitis risk loci, increasing the number of confirmed associations to 47 , 2011, Nature Genetics.

[43]  P. Visscher,et al.  GCTA: a tool for genome-wide complex trait analysis. , 2011, American journal of human genetics.

[44]  R. Küppers,et al.  Mechanisms of aberrant GATA3 expression in classical Hodgkin lymphoma and its consequences for the cytokine profile of Hodgkin and Reed/Sternberg cells. , 2010, Blood.

[45]  A. Ashworth,et al.  A genome-wide association study of Hodgkin Lymphoma identifies new susceptibility loci at 2p16.1 (REL), 8q24.21, and 10p14 (GATA3) , 2010, Nature Genetics.

[46]  D. Altshuler,et al.  A map of human genome variation from population-scale sequencing , 2010, Nature.

[47]  A. Morris,et al.  Data quality control in genetic case-control association studies , 2010, Nature Protocols.

[48]  W. Chan,et al.  BCL6 promoter interacts with far upstream sequences with greatly enhanced activating histone modifications in germinal center B cells , 2010, Proceedings of the National Academy of Sciences.

[49]  Trey Ideker,et al.  A global network of transcription factors, involving E2A, EBF1 and Foxo1, that orchestrates the B cell fate , 2010, Nature Immunology.

[50]  E. Taparowsky,et al.  Batf coordinates multiple aspects of B and T cell function required for normal antibody responses , 2010, The Journal of experimental medicine.

[51]  Tariq Ahmad,et al.  Meta-analysis and imputation refines the association of 15q25 with smoking quantity , 2010, Nature Genetics.

[52]  P. Deloukas,et al.  Multiple common variants for celiac disease influencing immune gene expression , 2010, Nature Genetics.

[53]  Michael R. Green,et al.  Selective interaction between Trf3 and Taf3 required for early development and hematopoiesis , 2009, Developmental dynamics : an official publication of the American Association of Anatomists.

[54]  M. Björkholm,et al.  Autoimmunity and risk for Hodgkin’s lymphoma by subtype , 2009, Haematologica.

[55]  R. Siebert,et al.  Mutations of NFKBIA, encoding IκBα, are a recurrent finding in classical Hodgkin lymphoma but are not a unifying feature of non‐EBV‐associated cases , 2009, International journal of cancer.

[56]  J. Romero,et al.  Differential Genetic and Functional Markers of Second Neoplasias in Hodgkin's Disease Patients , 2009, Clinical Cancer Research.

[57]  J. Gécz,et al.  A UPF3-mediated regulatory switch that maintains RNA surveillance , 2009, Nature Structural &Molecular Biology.

[58]  P. Donnelly,et al.  A Flexible and Accurate Genotype Imputation Method for the Next Generation of Genome-Wide Association Studies , 2009, PLoS genetics.

[59]  H. Qian,et al.  Identification of tyrosine kinase, HCK, and tumor suppressor, BIN1, as potential mediators of AHI-1 oncogene in primary and transformed CTCL cells. , 2009, Blood.

[60]  Hannah J. Whiteman,et al.  Downregulation of RUNX1 by RUNX3 Requires the RUNX3 VWRPY Sequence and Is Essential for Epstein-Barr Virus-Driven B-Cell Proliferation , 2009, Journal of Virology.

[61]  Ralf Küppers,et al.  The biology of Hodgkin's lymphoma , 2009, Nature Reviews Cancer.

[62]  H. Hjalgrim,et al.  Infectious aetiology of Hodgkin and non‐Hodgkin lymphomas: a review of the epidemiological evidence , 2008, Journal of internal medicine.

[63]  P. Sung,et al.  BLAP18/RMI2, a novel OB-fold-containing protein, is an essential component of the Bloom helicase-double Holliday junction dissolvasome. , 2008, Genes & development.

[64]  I. Arts A review of the epidemiological evidence on tea, flavonoids, and lung cancer. , 2008, The Journal of nutrition.

[65]  G. Reynolds,et al.  Down-regulation of the TGF-beta target gene, PTPRK, by the Epstein-Barr virus encoded EBNA1 contributes to the growth and survival of Hodgkin lymphoma cells. , 2008, Blood.

[66]  E. Vellenga,et al.  HLA class II expression by Hodgkin Reed-Sternberg cells is an independent prognostic factor in classical Hodgkin's lymphoma. , 2007, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[67]  P. Donnelly,et al.  A new multipoint method for genome-wide association studies by imputation of genotypes , 2007, Nature Genetics.

[68]  Simon C. Potter,et al.  Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls , 2007, Nature.

[69]  E. Roman,et al.  Obesity and the risk of Hodgkin lymphoma (United Kingdom) , 2006, Cancer Causes & Control.

[70]  G. Abecasis,et al.  Joint analysis is more efficient than replication-based analysis for two-stage genome-wide association studies , 2006, Nature Genetics.

[71]  P. Farrell,et al.  RUNX expression and function in human B cells. , 2006, Critical reviews in eukaryotic gene expression.

[72]  D. Clayton,et al.  Population structure, differential bias and genomic control in a large-scale, case-control association study , 2005, Nature Genetics.

[73]  C. Eaves,et al.  Deregulated expression in Ph+ human leukemias of AHI-1, a gene activated by insertional mutagenesis in mouse models of leukemia. , 2004, Blood.

[74]  G. M. Taylor,et al.  The Scotland and Newcastle epidemiological study of Hodgkin’s disease: impact of histopathological review and EBV status on incidence estimates , 2003, Journal of clinical pathology.

[75]  S. Hamilton-Dutoit,et al.  Loss of B cell identity correlates with loss of B cell-specific transcription factors in Hodgkin/Reed-Sternberg cells of classical Hodgkin lymphoma , 2002, Oncogene.

[76]  S. Thompson,et al.  Quantifying heterogeneity in a meta‐analysis , 2002, Statistics in medicine.

[77]  S. Alkan,et al.  Characterization of NF-κB Expression in Hodgkin’s Disease: Inhibition of Constitutively Expressed NF-κB Results in Spontaneous Caspase-Independent Apoptosis in Hodgkin and Reed-Sternberg Cells , 2001, Modern Pathology.

[78]  S. Alkan,et al.  Characterization of NF-kappaB expression in Hodgkin's disease: inhibition of constitutively expressed NF-kappaB results in spontaneous caspase-independent apoptosis in Hodgkin and Reed-Sternberg cells. , 2001, Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc.

[79]  G. M. Taylor,et al.  Risk factors for Hodgkin's disease by Epstein-Barr virus (EBV) status: prior infection by EBV and other agents , 2000, British Journal of Cancer.

[80]  L. Young,et al.  Analysis of major histocompatibility complex class I, TAP expression, and LMP2 epitope sequence in Epstein-Barr virus-positive Hodgkin's disease. , 1998, Blood.

[81]  G. Ghosh,et al.  Crystal structure of p50/p65 heterodimer of transcription factor NF-κB bound to DNA , 1998, Nature.

[82]  B. Dörken,et al.  Constitutive nuclear factor-kappaB-RelA activation is required for proliferation and survival of Hodgkin's disease tumor cells. , 1997, The Journal of clinical investigation.

[83]  B. Nathwani,et al.  Concordance for Hodgkin's disease in identical twins suggesting genetic susceptibility to the young-adult form of the disease. , 1995, The New England journal of medicine.

[84]  H. Erlich,et al.  Two new HLA DRB1 alleles found in African Americans: implications for balancing selection at positions 57 and 86. , 1992, Tissue antigens.

[85]  J. Rothbard,et al.  Effect of natural polymorphism at residue 86 of the HLA-DR beta chain on peptide binding. , 1991, Journal of immunology.