A consistent splitting scheme for unsteady incompressible viscous flows I. Dirichlet boundary condition and applications
暂无分享,去创建一个
[1] M. D. Deshpande,et al. FLUID MECHANICS IN THE DRIVEN CAVITY , 2000 .
[2] Jie Shen,et al. On error estimates of some higher order projection and penalty-projection methods for Navier-Stokes equations , 1992 .
[3] A. Chorin. Numerical solution of the Navier-Stokes equations , 1968 .
[4] R. Temam. Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (II) , 1969 .
[5] S. Turek. a Comparative Study of Time-Stepping Techniques for the Incompressible Navier-Stokes Equations: from Fully Implicit Non-Linear Schemes to Semi-Implicit Projection Methods , 1996 .
[6] A. Quarteroni,et al. Numerical Approximation of Partial Differential Equations , 2008 .
[7] N A Petersson,et al. A Split-Step Scheme for the Incompressible Navier-Stokes , 2001 .
[8] C. Ross Ethier,et al. Exact fully 3D Navier–Stokes solutions for benchmarking , 1994 .
[9] A discrete vector potential model for unsteady incompressible viscous flows , 1990 .
[10] Youcef Saad,et al. A Basic Tool Kit for Sparse Matrix Computations , 1990 .
[11] John C. Strikwerda. HIGH‐ORDER‐ACCURATE SCHEMES FOR INCOMPRESSIBLE VISCOUS FLOW , 1997 .
[12] Raz Kupferman,et al. A Central-Difference Scheme for a Pure Stream Function Formulation of Incompressible Viscous Flow , 2001, SIAM J. Sci. Comput..
[13] 川口 光年,et al. O. A. Ladyzhenskaya: The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach Sci. Pub. New York-London, 1963, 184頁, 15×23cm, 3,400円. , 1964 .
[14] J. Guermond,et al. Theory and practice of finite elements , 2004 .
[15] Alexandre J. Chorin,et al. On the Convergence of Discrete Approximations to the Navier-Stokes Equations , 1969 .
[16] M. Ben-Artzi,et al. A pure-compact scheme for the streamfunction formulation of Navier-Stokes equations , 2005 .
[17] Jie Shen,et al. Quelques résultats nouveaux sur les méthodes de projection , 2001 .
[18] Jean-Luc Guermond,et al. International Journal for Numerical Methods in Fluids on Stability and Convergence of Projection Methods Based on Pressure Poisson Equation , 2022 .
[19] Roger Pierre,et al. Some Experiments with Stability Analysis of Discrete Incompressible Flows in the Lid-Driven Cavity , 1997 .
[20] Joel Ferziger,et al. Higher Order Methods for Incompressible Fluid Flow: by Deville, Fischer and Mund, Cambridge University Press, 499 pp. , 2003 .
[21] Jie Shen,et al. A new class of truly consistent splitting schemes for incompressible flows , 2003 .
[22] M. Braza,et al. Numerical study and physical analysis of the pressure and velocity fields in the near wake of a circular cylinder , 1986, Journal of Fluid Mechanics.
[23] Frans N. van de Vosse,et al. An approximate projec-tion scheme for incompressible ow using spectral elements , 1996 .
[24] Ferdinand Kickinger,et al. Algebraic Multi-grid for Discrete Elliptic Second-Order Problems , 1998 .
[25] Irfan Altas,et al. Multigrid Solution of Automatically Generated High-Order Discretizations for the Biharmonic Equation , 1998, SIAM J. Sci. Comput..
[26] Jie Shen,et al. On the error estimates for the rotational pressure-correction projection methods , 2003, Math. Comput..
[27] Dalia Fishelov,et al. Vorticity dynamics and numerical Resolution of Navier-Stokes Equations , 2001 .
[28] O. D. Kellogg. Foundations of potential theory , 1934 .
[29] O. Ladyzhenskaya,et al. Mathematical Analysis of Navier-Stokes Equations for Incompressible Liquids , 1975 .
[30] A. Huerta,et al. Finite Element Methods for Flow Problems , 2003 .
[31] Michel Fortin,et al. Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.
[32] R. Glowinski. Finite element methods for incompressible viscous flow , 2003 .
[33] Eitan Tadmor,et al. New High-Resolution Semi-discrete Central Schemes for Hamilton—Jacobi Equations , 2000 .
[34] G. Taylor,et al. LXXV. On the decay of vortices in a viscous fluid , 1923 .
[35] Jie Shen,et al. Velocity-Correction Projection Methods for Incompressible Flows , 2003, SIAM J. Numer. Anal..
[36] C. K. Chu,et al. Numerical Methods in Fluid Dynamics , 1979 .
[37] K. Goda,et al. A multistep technique with implicit difference schemes for calculating two- or three-dimensional cavity flows , 1979 .