A consistent splitting scheme for unsteady incompressible viscous flows I. Dirichlet boundary condition and applications

A well-recognized approach for handling the incompressibility constraint by operating directly on the discretized Navier–Stokes equations is used to obtain the decoupling of the pressure from the velocity field. By following the current developments by Guermond and Shen, the possibilities of obtaining accurate pressure and reducing boundary-layer effect for the pressure are analysed. The present study mainly reports the numerical solutions of an unsteady Navier–Stokes problem based on the so-called consistent splitting scheme (J. Comput. Phys. 2003; 192:262–276). At the same time the Dirichlet boundary value conditions are considered. The accuracy of the method is carefully examined against the exact solution for an unsteady flow physics problem in a simply connected domain. The effectiveness is illustrated viz. several computations of 2D double lid-driven cavity problems. Copyright © 2005 John Wiley & Sons, Ltd.

[1]  M. D. Deshpande,et al.  FLUID MECHANICS IN THE DRIVEN CAVITY , 2000 .

[2]  Jie Shen,et al.  On error estimates of some higher order projection and penalty-projection methods for Navier-Stokes equations , 1992 .

[3]  A. Chorin Numerical solution of the Navier-Stokes equations , 1968 .

[4]  R. Temam Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (II) , 1969 .

[5]  S. Turek a Comparative Study of Time-Stepping Techniques for the Incompressible Navier-Stokes Equations: from Fully Implicit Non-Linear Schemes to Semi-Implicit Projection Methods , 1996 .

[6]  A. Quarteroni,et al.  Numerical Approximation of Partial Differential Equations , 2008 .

[7]  N A Petersson,et al.  A Split-Step Scheme for the Incompressible Navier-Stokes , 2001 .

[8]  C. Ross Ethier,et al.  Exact fully 3D Navier–Stokes solutions for benchmarking , 1994 .

[9]  A discrete vector potential model for unsteady incompressible viscous flows , 1990 .

[10]  Youcef Saad,et al.  A Basic Tool Kit for Sparse Matrix Computations , 1990 .

[11]  John C. Strikwerda HIGH‐ORDER‐ACCURATE SCHEMES FOR INCOMPRESSIBLE VISCOUS FLOW , 1997 .

[12]  Raz Kupferman,et al.  A Central-Difference Scheme for a Pure Stream Function Formulation of Incompressible Viscous Flow , 2001, SIAM J. Sci. Comput..

[13]  川口 光年,et al.  O. A. Ladyzhenskaya: The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach Sci. Pub. New York-London, 1963, 184頁, 15×23cm, 3,400円. , 1964 .

[14]  J. Guermond,et al.  Theory and practice of finite elements , 2004 .

[15]  Alexandre J. Chorin,et al.  On the Convergence of Discrete Approximations to the Navier-Stokes Equations , 1969 .

[16]  M. Ben-Artzi,et al.  A pure-compact scheme for the streamfunction formulation of Navier-Stokes equations , 2005 .

[17]  Jie Shen,et al.  Quelques résultats nouveaux sur les méthodes de projection , 2001 .

[18]  Jean-Luc Guermond,et al.  International Journal for Numerical Methods in Fluids on Stability and Convergence of Projection Methods Based on Pressure Poisson Equation , 2022 .

[19]  Roger Pierre,et al.  Some Experiments with Stability Analysis of Discrete Incompressible Flows in the Lid-Driven Cavity , 1997 .

[20]  Joel Ferziger,et al.  Higher Order Methods for Incompressible Fluid Flow: by Deville, Fischer and Mund, Cambridge University Press, 499 pp. , 2003 .

[21]  Jie Shen,et al.  A new class of truly consistent splitting schemes for incompressible flows , 2003 .

[22]  M. Braza,et al.  Numerical study and physical analysis of the pressure and velocity fields in the near wake of a circular cylinder , 1986, Journal of Fluid Mechanics.

[23]  Frans N. van de Vosse,et al.  An approximate projec-tion scheme for incompressible ow using spectral elements , 1996 .

[24]  Ferdinand Kickinger,et al.  Algebraic Multi-grid for Discrete Elliptic Second-Order Problems , 1998 .

[25]  Irfan Altas,et al.  Multigrid Solution of Automatically Generated High-Order Discretizations for the Biharmonic Equation , 1998, SIAM J. Sci. Comput..

[26]  Jie Shen,et al.  On the error estimates for the rotational pressure-correction projection methods , 2003, Math. Comput..

[27]  Dalia Fishelov,et al.  Vorticity dynamics and numerical Resolution of Navier-Stokes Equations , 2001 .

[28]  O. D. Kellogg Foundations of potential theory , 1934 .

[29]  O. Ladyzhenskaya,et al.  Mathematical Analysis of Navier-Stokes Equations for Incompressible Liquids , 1975 .

[30]  A. Huerta,et al.  Finite Element Methods for Flow Problems , 2003 .

[31]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[32]  R. Glowinski Finite element methods for incompressible viscous flow , 2003 .

[33]  Eitan Tadmor,et al.  New High-Resolution Semi-discrete Central Schemes for Hamilton—Jacobi Equations , 2000 .

[34]  G. Taylor,et al.  LXXV. On the decay of vortices in a viscous fluid , 1923 .

[35]  Jie Shen,et al.  Velocity-Correction Projection Methods for Incompressible Flows , 2003, SIAM J. Numer. Anal..

[36]  C. K. Chu,et al.  Numerical Methods in Fluid Dynamics , 1979 .

[37]  K. Goda,et al.  A multistep technique with implicit difference schemes for calculating two- or three-dimensional cavity flows , 1979 .