Binary templates for comma-free DNA codes

Arita and Kobayashi proposed a method for constructing comma-free DNA codes using binary templates, and showed that the separation d of any such binary template of length n satisfies d==11n/30. Here we demonstrate the existence of an infinite family of binary templates with d>n/2-(18nlog"en)^1^/^2. We also give an explicit construction for an infinite family of binary templates with d>n/2-19n^1^/^2log"en.

[1]  H. Chernoff A Measure of Asymptotic Efficiency for Tests of a Hypothesis Based on the sum of Observations , 1952 .

[2]  A. Weil Sur les courbes algébriques et les variétés qui s'en déduisent , 1948 .

[3]  Helmut Hasse,et al.  Number Theory , 2020, An Introduction to Probabilistic Number Theory.

[4]  F H Crick,et al.  CODES WITHOUT COMMAS. , 1957, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Ronald W. Davis,et al.  Quantitative phenotypic analysis of yeast deletion mutants using a highly parallel molecular bar–coding strategy , 1996, Nature Genetics.

[6]  Satoshi Kobayashi,et al.  DNA sequence design using templates , 2002, New Generation Computing.

[7]  Christian Mauduit,et al.  On Finite Pseudorandom Binary Sequences: II. The Champernowne, Rudin–Shapiro, and Thue–Morse Sequences, A Further Construction , 1998 .

[8]  S. Golomb,et al.  Comma-Free Codes , 1958, Canadian Journal of Mathematics.

[9]  Jean-Pierre Serre A Course in Arithmetic , 1973 .

[10]  B. H. Jiggs,et al.  Regent Results in Comma-Free Codes , 1963, Canadian Journal of Mathematics.

[11]  V. Levenshtein Combinatorial problems motivated by comma‐free codes , 2004 .

[12]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[13]  András Sárközy,et al.  On finite pseudorandom binary sequences I: Measure of pseudorandomness, the Legendre symbol , 1997 .

[14]  Brian Hayes,et al.  THE INVENTION OF THE GENETIC CODE , 1998 .

[15]  András Sárközy,et al.  On Finite Pseudorandom Binary Sequences: II. The Champernowne, Rudin–Shapiro, and Thue–Morse Sequences, A Further Construction , 1998 .

[16]  Satoshi Kobayashi,et al.  On Template Method for DNA Sequence Design , 2002, DNA.

[17]  L M Adleman,et al.  Molecular computation of solutions to combinatorial problems. , 1994, Science.

[18]  Pericles S. Theocaris Number theory in science and communication , 1986 .