A genomic perspective on the shortcomings of mitochondrial DNA for "barcoding" identification.

Approximately 600-bp sequences of mitochondrial DNA (mtDNA) have been designated as "DNA barcodes" and have become one of the most contentious and animated issues in the application of genetic information to global biodiversity assessment and species identification. Advocates of DNA barcodes have received extensive attention and promotion in many popular and refereed scientific publications. However, we suggest that the utility of barcodes is suspect and vulnerable to technical challenges that are particularly pertinent to mtDNA. We review the natural history of mtDNA and discuss problems for barcoding which are particularly associated with mtDNA and inheritance, including reduced effective population size, maternal inheritance, recombination, inconsistent mutation rate, heteroplasmy, and compounding evolutionary processes. The aforementioned could significantly limit the application and utility of mtDNA barcoding efforts. Furthermore, global use of barcodes will require application and acceptance of a barcode-based species concept that has not been evaluated in the context of the extensive literature concerning species designation. Implementation of mtDNA barcodes in spite of technical and practical shortcomings we discuss may degrade the longstanding synthesis of genetic and organism-based research and will not advance studies ranging from genomic evolution to biodiversity assessment.

[1]  M. Lowman,et al.  Measuring arthropod biodiversity in the tropical forest canopy. , 1995 .

[2]  David B. Wake,et al.  EVOLUTIONARY RELATIONSHIPS WITHIN THE ENSATINA ESCHSCHOLTZII COMPLEX CONFIRM THE RING SPECIES INTERPRETATION , 1992 .

[3]  D. Rubinoff Utility of Mitochondrial DNA Barcodes in Species Conservation , 2006, Conservation biology : the journal of the Society for Conservation Biology.

[4]  B. Dayrat,et al.  Towards integrative taxonomy , 2005 .

[5]  M. Blaxter The promise of a DNA taxonomy. , 2004, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[6]  D. Janzen,et al.  Wedding biodiversity inventory of a large and complex Lepidoptera fauna with DNA barcoding , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[7]  C. Gissi,et al.  Evolutionary genomics in Metazoa: the mitochondrial DNA as a model system. , 1999, Gene.

[8]  M. Whiting,et al.  Association of insect life stages using DNA sequences: the larvae of Philodytes umbrinus (Motschulsky) (Coleoptera: Dytiscidae) , 2005 .

[9]  Konstantin Khrapko,et al.  Recombination of Human Mitochondrial DNA , 2004, Science.

[10]  P. Hebert,et al.  Biological identification of springtails (Hexapoda: Collembola) from the Canadian Arctic, using mitochondrial DNA barcodes , 2004 .

[11]  S. O’Brien,et al.  Genomic inferences from Afrotheria and the evolution of elephants. , 2005, Current opinion in genetics & development.

[12]  Jose V. Lopez,et al.  Numt, a recent transfer and tandem amplification of mitochondrial DNA to the nuclear genome of the domestic cat , 1994, Journal of Molecular Evolution.

[13]  D. Caron,et al.  Protistan Diversity Estimates Based on 18S rDNA from Seawater Incubations in the Western North Atlantic 1 , 2005, The Journal of eukaryotic microbiology.

[14]  G. Hoarau,et al.  Heteroplasmy and evidence for recombination in the mitochondrial control region of the flatfish Platichthys flesus. , 2002, Molecular biology and evolution.

[15]  V. Savolainen,et al.  Towards writing the encyclopaedia of life: an introduction to DNA barcoding , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[16]  J. W. Sites,et al.  OPERATIONAL CRITERIA FOR DELIMITING SPECIES , 2004 .

[17]  M. Vences,et al.  Deciphering amphibian diversity through DNA barcoding: chances and challenges , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[18]  A. Vogler,et al.  Extensive trans‐species mitochondrial polymorphisms in the carabid beetles Carabus subgenus Ohomopterus caused by repeated introgressive hybridization , 2001, Molecular ecology.

[19]  B. Lemire,et al.  Stable heteroplasmy but differential inheritance of a large mitochondrial DNA deletion in nematodes. , 2002, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[20]  S. Cameron,et al.  Are plant DNA barcodes a search for the Holy Grail? , 2006, Trends in ecology & evolution.

[21]  J. Patton,et al.  Paraphyly, polyphyly, and the nature of species boundaries in pocket gophers (Genus Thomomys) , 1994 .

[22]  N. Saitou,et al.  The neighbor-joining method: a new method for reconstructing phylogenetic trees. , 1987, Molecular biology and evolution.

[23]  M. Wade Evolution: Infectious speciation , 2001, Nature.

[24]  John Stanisic,et al.  Reconciling paleodistribution models and comparative phylogeography in the Wet Tropics rainforest land snail Gnarosophia bellendenkerensis (Brazier 1875) , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[25]  D. Janzen,et al.  DNA barcodes distinguish species of tropical Lepidoptera. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[26]  A. Austin,et al.  Frequent Mitochondrial Gene Rearrangements at the Hymenopteran nad3–nad5 Junction , 2003, Journal of Molecular Evolution.

[27]  Paul D N Hebert,et al.  DNA barcodes reveal cryptic host-specificity within the presumed polyphagous members of a genus of parasitoid flies (Diptera: Tachinidae). , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[28]  Marty C. Brandon,et al.  Effects of Purifying and Adaptive Selection on Regional Variation in Human mtDNA , 2004, Science.

[29]  O. Jousson,et al.  Use of the ITS rDNA for elucidation of some life-cycles of Mesometridae (Trematoda, Digenea). , 1998, International journal for parasitology.

[30]  J. Krieger,et al.  Restriction site heteroplasmy in the mitochondrial DNA of Brycon opalinus (Cuvier, 1819) (Characiformes, Characidae, Bryconiae). , 2004, Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas.

[31]  G. Hewitt,et al.  Insect mitochondrial control region: A review of its structure, evolution and usefulness in evolutionary studies , 1997 .

[32]  G. Shadel,et al.  Mitochondrial DNA maintenance in vertebrates. , 1997, Annual review of biochemistry.

[33]  J. Avise Phylogeography: The History and Formation of Species , 2000 .

[34]  J. Mallet,et al.  Strikingly variable divergence times inferred across an Amazonian butterfly ‘suture zone’ , 2005, Proceedings of the Royal Society B: Biological Sciences.

[35]  M. Hoy,et al.  Long PCR improves Wolbachia DNA amplification: wsp sequences found in 76% of sixty‐three arthropod species , 2000, Insect molecular biology.

[36]  A. Brower Problems with DNA barcodes for species delimitation: ‘Ten species’ of Astraptes fulgerator reassessed (Lepidoptera: Hesperiidae) , 2006 .

[37]  R. Nielsen,et al.  A likelihood ratio test for species membership based on DNA sequence data , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[38]  R. Adams,et al.  Molecular Systematics of Goniodidae (Insecta: Phthiraptera) , 2001, The Journal of parasitology.

[39]  J. Searle,et al.  Mitochondrial differentiation, introgression and phylogeny of species in the Tegenaria atrica group (Araneae: Agelenidae) , 2004 .

[40]  Anastasios D. Tsaousis,et al.  Widespread recombination in published animal mtDNA sequences. , 2005, Molecular biology and evolution.

[41]  W. Salzburger,et al.  Phylogenetic relationships of the lamprologine cichlid genus Lepidiolamprologus (Teleostei: Perciformes) based on mitochondrial and nuclear sequences, suggesting introgressive hybridization. , 2006, Molecular phylogenetics and evolution.

[42]  A. Skalski,et al.  2. Phylogeny and Palaeontology , 1998 .

[43]  V. Lebedev,et al.  Divergent and reticulate processes in evolution of Ethiopian Lophuromys flavopunctatus species complex: evidence from mitochondrial and nuclear DNA differentiation patterns , 2004 .

[44]  C. Moritz,et al.  Comparative phylogeography and the history of endemic vertebrates in the Wet Tropics rainforests of Australia , 1998 .

[45]  Michael Sorenson,et al.  Is homoplasy or lineage sorting the source of incongruent mtdna and nuclear gene trees in the stiff-tailed ducks (Nomonyx-Oxyura)? , 2005, Systematic biology.

[46]  HIGH FIDELITY OF MITOCHONDRIAL GENOME TRANSMISSION UNDER THE DOUBLY UNIPARENTAL MODE OF INHERITANCE IN FRESHWATER MUSSELS (BIVALVIA: UNIONOIDEA) , 2002, Evolution; international journal of organic evolution.

[47]  Andrew P. Gibson,et al.  A comprehensive analysis of mammalian mitochondrial genome base composition and improved phylogenetic methods. , 2005, Molecular biology and evolution.

[48]  A. Eyre-Walker,et al.  A broad survey of recombination in animal mitochondria. , 2004, Molecular biology and evolution.

[49]  K. Morris,et al.  An integrated approach to fast and informative morphological vouchering of nematodes for applications in molecular barcoding , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[50]  K. McCracken,et al.  ASYMMETRIC HYBRIDIZATION AND SEX-BIASED GENE FLOW BETWEEN EASTERN SPOT-BILLED DUCKS (ANAS ZONORHYNCHA) AND MALLARDS (A. PLATYRHYNCHOS) IN THE RUSSIAN FAR EAST , 2004 .

[51]  D. J. Funk,et al.  Species-Level Paraphyly and Polyphyly: Frequency, Causes, and Consequences, with Insights from Animal Mitochondrial DNA , 2003 .

[52]  D. Rubinoff,et al.  Mitochondrial DNA sequence, morphology and ecology yield contrasting conservation implications for two threatened buckmoths (Hemileuca: Saturniidae) , 2004 .

[53]  Q. Wheeler,et al.  The perils of DNA barcoding and the need for integrative taxonomy. , 2005, Systematic biology.

[54]  C. Cicero,et al.  Open access, freely available online Correspondence DNA Barcoding: Promise and Pitfalls , 2022 .

[55]  F. Frati,et al.  The complete mitochondrial DNA sequence of the basal hexapod Tetrodontophora bielanensis: evidence for heteroplasmy and tRNA translocations. , 2001, Molecular biology and evolution.

[56]  D. Janzen,et al.  Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[57]  K. Crandall,et al.  Considering evolutionary processes in conservation biology. , 2000, Trends in ecology & evolution.

[58]  E. Ladoukakis,et al.  Direct evidence for homologous recombination in mussel (Mytilus galloprovincialis) mitochondrial DNA. , 2001, Molecular biology and evolution.

[59]  A. von Haeseler,et al.  Extreme sequence heteroplasmy in bat mitochondrial DNA. , 1996, Biological chemistry.

[60]  B. Frey,et al.  Origin of intra-individual variation in PCR-amplified mitochondrial cytochrome oxidase I of Thrips tabaci (Thysanoptera: Thripidae): mitochondrial heteroplasmy or nuclear integration? , 2004, Hereditas.

[61]  S. Talbot,et al.  Phylogeography of brown bears (Ursus arctos) of Alaska and paraphyly within the Ursidae. , 1996, Molecular phylogenetics and evolution.

[62]  K. Shaw Conflict between nuclear and mitochondrial DNA phylogenies of a recent species radiation: What mtDNA reveals and conceals about modes of speciation in Hawaiian crickets , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[63]  Kevin C. Nixon,et al.  Populations, Genetic Variation, and the Delimitation of Phylogenetic Species , 1992 .

[64]  N. Petit,et al.  The nuclear genome is involved in heteroplasmy control in a mitochondrial mutant strain of Drosophila subobscura. , 2002, European journal of biochemistry.

[65]  D. Janzen,et al.  Use of DNA barcodes to identify flowering plants. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[66]  C. Meyer,et al.  DNA Barcoding: Error Rates Based on Comprehensive Sampling , 2005, PLoS biology.

[67]  Christopher J. Schneider,et al.  DIVERSIFICATION OF RAINFOREST FAUNAS: An Integrated Molecular Approach , 2000 .

[68]  B. Malyarchuk,et al.  High levels of mitochondrial DNA heteroplasmy in single hair roots: Reanalysis and revision , 2003, Electrophoresis.

[69]  D. Rubinoff,et al.  Between two extremes: mitochondrial DNA is neither the panacea nor the nemesis of phylogenetic and taxonomic inference. , 2005, Systematic biology.

[70]  T. Dowling,et al.  THE ROLE OF INTROGRESSIVE HYBRIDIZATION IN THE EVOLUTION OF THE GILA ROBUSTA COMPLEX (TELEOSTEI: CYPRINIDAE) , 2001, Evolution; international journal of organic evolution.

[71]  D. Skibinski,et al.  Evidence for recombination of mtDNA in the marine mussel Mytilus trossulus from the Baltic. , 2003, Molecular biology and evolution.

[72]  S. Ball,et al.  DNA barcodes for biosecurity: invasive species identification , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[73]  R. DeSalle,et al.  PCR identification of black caviar , 1996, Nature.

[74]  D. Janzen Setting up tropical biodiversity for conservation through non-damaging use: participation by parataxonomists , 2004 .

[75]  H. Korpelainen The evolutionary processes of mitochondrial and chloroplast genomes differ from those of nuclear genomes , 2004, Naturwissenschaften.

[76]  Rob DeSalle,et al.  An automated phylogenetic key for classifying homeoboxes , 2002 .

[77]  R. Nielsen,et al.  Statistical approaches for DNA barcoding. , 2006, Systematic biology.

[78]  Jeremy R. deWaard,et al.  Biological identifications through DNA barcodes , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[79]  F. Sperling,et al.  MITOCHONDRIAL DNA VARIATION WITHIN AND BETWEEN SPECIES OF THE PAPILIO MACHAON GROUP OF SWALLOWTAIL BUTTERFLIES , 1994, Evolution; international journal of organic evolution.

[80]  Arie van der Meijden,et al.  Comparative performance of the 16S rRNA gene in DNA barcoding of amphibians , 2005, Frontiers in Zoology.

[81]  B. Bowen,et al.  Evolutionary Significant Units versus Geopolitical Taxonomy: Molecular Systematics of an Endangered Sea Turtle (genus Chelonia) , 1999 .

[82]  A. Austin,et al.  Evolutionary dynamics of a mitochondrial rearrangement "hot spot" in the Hymenoptera. , 1999, Molecular biology and evolution.

[83]  A. Meyer,et al.  TaxI: a software tool for DNA barcoding using distance methods , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[84]  Yuanpi Xiao Animal Mitochondrial DNA Recombination , 2008 .

[85]  S. Bensch,et al.  Speciation in a ring , 2001, Nature.

[86]  J. Bickham,et al.  INTROGRESSIVE HYBRIDIZATION AND NONCONCORDANT EVOLUTIONARY HISTORY OF MATERNAL AND PATERNAL LINEAGES IN NORTH AMERICAN DEER , 1998, Evolution; international journal of organic evolution.

[87]  Rob DeSalle,et al.  The unholy trinity: taxonomy, species delimitation and DNA barcoding , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[88]  J. Sites,et al.  Delimiting species: a Renaissance issue in systematic biology , 2003 .

[89]  Robert A. Wilson Species: New Interdisciplinary Essays , 1999 .

[90]  Michael C Whitlock,et al.  The incomplete natural history of mitochondria , 2004, Molecular ecology.

[91]  S. Zuckerman,et al.  Mitochondrial protein synthesis in interspecific somatic cell hybrids , 1986, Somatic cell and molecular genetics.

[92]  P. Hebert,et al.  Identification of Birds through DNA Barcodes , 2004, PLoS biology.

[93]  O. Jousson,et al.  Molecular identification of developmental stages in Opecoelidae (Digenea). , 1999, International journal for parasitology.

[94]  R. Ward,et al.  DNA barcoding Australia's fish species , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[95]  K. Will,et al.  Myth of the molecule: DNA barcodes for species cannot replace morphology for identification and classification , 2004, Cladistics : the international journal of the Willi Hennig Society.

[96]  Xiaoxiang Hu,et al.  Further evidence for paternal inheritance of mitochondrial DNA in the sheep (Ovis aries) , 2004, Heredity.