Fluorescence and thermal stress properties of Yb3+-doped alumino silicate glasses for ultra high peak power laser applications

Various alumino silicate glasses (network modifier ions: Li+, Mg2+, Zn2+ and/or La3+) doped with 1 × 1020 Yb3+ cm−3 (about 0.2 mol% Yb2O3) were prepared. The glasses were studied with respect to their thermo-mechanical and fluorescence properties. Huge differences are found for the coefficients of thermal expansion which determine the thermal shock resistance of the material and hence are required for ultra-high power laser applications. Here, zinc and magnesium alumino silicate glasses show the lowest values. The fluorescence lifetimes of the glasses increase with decreasing average atomic weight of the glass composition (685–1020 µs). All glasses show broad and smooth emission spectra with little variations due to compositional changes.Mixed lithium zinc or lithium magnesium alumino silicate glasses could be promising new laser materials especially with respect to ultra-high peak power systems or applications with high repetition rates.

[1]  C. Rüssel,et al.  Microstructure-property relationship in high-strength MgO-Al2O3-SiO2-TiO2 glass-ceramics , 2002 .

[2]  M. Reben,et al.  Thermal Stability and Crystallization Kinetics of MgO―Al2O3―B2O3―SiO2 Glasses , 2011 .

[3]  Karen Willcox,et al.  Kinetics and kinematics for translational motions in microgravity during parabolic flight. , 2009, Aviation, space, and environmental medicine.

[4]  C. Rüssel,et al.  Sm3+-doped La2O3–Al2O3–SiO2-glasses: structure, fluorescence and thermal expansion , 2013, Journal of Materials Science.

[5]  R. J. Bell,et al.  Atomic vibrations in vitreous silica , 1970 .

[6]  A. Pöppl Direct spectroscopic observation of the atomic-scale mechanisms of clustering and homogenization of rare-earth dopant ions in vitreous silica , 2006 .

[7]  Tayyab I. Suratwala,et al.  Nd-doped phosphate glasses for high-energy/high-peak-power lasers , 2000 .

[8]  A. Gebhardt,et al.  Young's moduli and microhardness of glass–ceramics in the system MgO/Al2O3/TiO2/ZrO2/SiO2 containing quartz nanocrystals , 2010 .

[9]  Joerg R. Jinschek,et al.  Design of oxy-fluoride glass-ceramics containing NaLaF4 nano-crystals , 2010 .

[10]  C. Rüssel,et al.  Formation of nano-crystalline quartz crystals from ZnO/MgO/Al2O3/TiO2/ZrO2/SiO2 glasses , 2010 .

[11]  I. A. Mironov,et al.  Thermal conductivity of single crystals of Ca1 − xYbxF2 + x solid solutions , 2008 .

[12]  D. Mccumber,et al.  Einstein Relations Connecting Broadband Emission and Absorption Spectra , 1964 .

[13]  D. Tsai,et al.  Micromachined tunable metamaterials: a review , 2012 .

[14]  Lloyd L. Chase,et al.  Infrared cross-section measurements for crystals doped with Er/sup 3+/, Tm/sup 3+/, and Ho/sup 3+/ , 1992 .

[15]  Y. Fujimoto,et al.  Laser Oscillation of Nd-Doped Silica Glass with High Thermal Shock Parameter , 2006 .

[16]  A. Durán,et al.  Fluorine sites in glasses and transparent glass-ceramics of the system Na2O/K2O/Al2O3/SiO2/BaF2 , 2011 .

[17]  Y. Fujimoto,et al.  Development of Nd-doped Optical Gain Material Based on Silica Glass with High Thermal Shock Parameter for High-Average-Power Laser , 2005, (CLEO). Conference on Lasers and Electro-Optics, 2005..

[18]  C. Rüssel,et al.  Self-organized nanocrystallinity in MgO–Al2O3–SiO2 glasses with ZrO2 as nucleating agent , 2010 .

[19]  T. Basiev,et al.  Thermal conductivity of single crystals of Ba1 − xYbxF2 + x solid solution , 2008 .

[20]  C. Rüssel,et al.  Crystallization and mechanical properties of MgO/Al2O3/SiO2/ZrO2 glass-ceramics with and without the addition of yttria , 2011 .

[21]  Joachim Hein,et al.  High-intensity, high-contrast laser pulses generated from the fully diode-pumped Yb:glass laser system POLARIS. , 2013, Optics letters.

[22]  C. Rüssel,et al.  Structure and fluorescence properties of ternary aluminosilicate glasses doped with samarium and europium , 2014 .

[23]  Joachim Hein,et al.  Magnesium aluminosilicate glasses as potential laser host material for ultrahigh power laser systems , 2013 .

[24]  Thierry Advocat,et al.  Chemical Durability of Aluminosilicate Glasses Containing Low Solubility Chemical Elements , 1997 .

[25]  Joseph S. Hayden,et al.  Advances In Glasses For High Average Power Laser Systems , 1989, Other Conferences.

[26]  Patrick Georges,et al.  On Yb:CaF2 and Yb:SrF2 : Review of spectroscopic and thermal properties and their impact on femtosecond and high power laser performance , 2011 .

[27]  Joachim Hein,et al.  Measurement of temperature-dependent absorption and emission spectra of Yb:YAG, Yb:LuAG, and Yb:CaF_2 between 20 °C and 200 °C and predictions on their influence on laser performance , 2012 .

[28]  Y. Fujimoto,et al.  A novel method for uniform dispersion of the rare earth ions in SiO2 glass using zeolite X , 1997 .

[29]  A. Gebhardt,et al.  Ultra-high thermal expansion glass–ceramics in the system MgO/Al2O3/TiO2/ZrO2/SiO2 by volume crystallization of cristobalite , 2008 .

[30]  C. Rüssel,et al.  Colorless and high strength MgO/Al2 O3 /SiO2 glass-ceramic dental material using zirconia as nucleating agent. , 2012, Journal of biomedical materials research. Part B, Applied biomaterials.