Imbalanced SVM‐Based Anomaly Detection Algorithm for Imbalanced Training Datasets

[1]  VARUN CHANDOLA,et al.  Anomaly detection: A survey , 2009, CSUR.

[2]  Yashwant Prasad Singh,et al.  ONE-CLASS SUPPORT VECTOR MACHINES APPROACH TO ANOMALY DETECTION , 2013, Appl. Artif. Intell..

[3]  Longin Jan Latecki,et al.  Improving SVM classification on imbalanced time series data sets with ghost points , 2011, Knowledge and Information Systems.

[4]  Jianguo Liu,et al.  A Hybrid Anomaly Detection Framework in Cloud Computing Using One-Class and Two-Class Support Vector Machines , 2012, ADMA.

[5]  Luís Torgo,et al.  A Survey of Predictive Modeling on Imbalanced Domains , 2016, ACM Comput. Surv..

[6]  Alfredo Petrosino,et al.  Adjusted F-measure and kernel scaling for imbalanced data learning , 2014, Inf. Sci..

[7]  Ee-Peng Lim,et al.  On strategies for imbalanced text classification using SVM: A comparative study , 2009, Decis. Support Syst..

[8]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[9]  Nitesh V. Chawla,et al.  SMOTE: Synthetic Minority Over-sampling Technique , 2002, J. Artif. Intell. Res..

[10]  Dong Li,et al.  A method of anomaly detection and fault diagnosis with online adaptive learning under small training samples , 2017, Pattern Recognit..

[11]  Antônio de Pádua Braga,et al.  An Improved Algorithm for SVMs Classification of Imbalanced Data Sets , 2009, EANN.

[12]  Johan A. K. Suykens,et al.  EnsembleSVM: a library for ensemble learning using support vector machines , 2014, J. Mach. Learn. Res..

[13]  Yong Zhang,et al.  Imbalanced data classification based on scaling kernel-based support vector machine , 2014, Neural Computing and Applications.