Back-scattered detection provides atomic-scale localization precision, stability, and registration in 3D.

State-of-the-art microscopy techniques (e.g., atomic force microscopy, scanning-tunneling microscopy, and optical tweezers) are sensitive to atomic-scale (100 pm) displacements. Yet, sample drift limits the ultimate potential of many of these techniques. We demonstrate a general solution for sample control in 3D using back-scattered detection (BSD) in both air and water. BSD off a silicon disk fabricated on a cover slip enabled 19 pm lateral localization precision (Deltaf = 0.1-50 Hz) with low crosstalk between axes (</=3%). We achieved atomic-scale stabilization (88, 79, and 98 pm, in x, y, and z, respectively; Deltaf = 0.1-50 Hz) and registration ( approximately 50 pm (rms), N = 14, Deltat = 90 s) of a sample in 3D that allows for stabilized scanning with uniform steps using low laser power (1 mW). Thus, BSD provides a precise method to locally measure and thereby actively control sample position for diverse applications, especially those with limited optical access such as scanning probe microscopy, and magnetic tweezers.

[1]  E. Stelzer,et al.  Three‐dimensional high‐resolution particle tracking for optical tweezers by forward scattered light , 1999, Microscopy research and technique.

[2]  C. Musil,et al.  Direct growth of nanostructures by deposition through an Si3N4 shadow mask , 1999 .

[3]  Rolf Möller,et al.  ``Tracking'' tunneling microscopy , 1988 .

[4]  T. Perkins,et al.  Measuring 0.1-nm motion in 1 ms in an optical microscope with differential back-focal-plane detection. , 2004, Optics letters.

[5]  H. Rubinsztein-Dunlop,et al.  Determination of the force constant of a single-beam gradient trap by measurement of backscattered light. , 1996, Applied optics.

[6]  V. Subramaniam,et al.  Force detection in optical tweezers using backscattered light. , 2005, Optics express.

[7]  Joshua W Shaevitz,et al.  An automated two-dimensional optical force clamp for single molecule studies. , 2002, Biophysical journal.

[8]  Heinrich Rohrer,et al.  7 × 7 Reconstruction on Si(111) Resolved in Real Space , 1983 .

[9]  Masayuki Abe,et al.  Drift-compensated data acquisition performed at room temperature with frequency modulation atomic force microscopy , 2007 .

[10]  W. Denk,et al.  Optical measurement of picometer displacements of transparent microscopic objects. , 1990, Applied optics.

[11]  James K. Gimzewski,et al.  A femtojoule calorimeter using micromechanical sensors , 1994 .

[12]  Francesco S. Pavone,et al.  Position control and optical manipulation for nanotechnology applications , 2005 .

[13]  C. Gerber,et al.  Micromechanical sensor for studying heats of surface reactions, adsorption, and cluster deposition processes. , 2007, The Review of scientific instruments.

[14]  P K Hansma,et al.  Direct observation of enzyme activity with the atomic force microscope. , 1994, Science.

[15]  Swartzentruber,et al.  Direct measurement of surface diffusion using atom-tracking scanning tunneling microscopy. , 1996, Physical review letters.

[16]  D. Eigler,et al.  Positioning single atoms with a scanning tunnelling microscope , 1990, Nature.

[17]  Henry I. Smith,et al.  Nanometer-precision pattern registration for scanning-probe lithographies using interferometric-spatial-phase imaging , 2006 .

[18]  K Bergman,et al.  Characterization of photodamage to Escherichia coli in optical traps. , 1999, Biophysical journal.

[19]  M. Radmacher,et al.  Protein tracking and detection of protein motion using atomic force microscopy. , 1996, Biophysical journal.

[20]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[21]  Masayuki Abe,et al.  Atom inlays performed at room temperature using atomic force microscopy , 2005, Nature materials.

[22]  S. Block,et al.  Construction of multiple-beam optical traps with nanometer-resolution position sensing , 1996 .

[23]  M. Sheetz,et al.  Tracking kinesin-driven movements with nanometre-scale precision , 1988, Nature.

[24]  J. Golovchenko,et al.  Probing nanotube-nanopore interactions. , 2005, Physical review letters.

[25]  Daniel J Müller,et al.  Single-molecule studies of membrane proteins. , 2006, Current opinion in structural biology.

[26]  C. Schmidt,et al.  Interference model for back-focal-plane displacement detection in optical tweezers. , 1998, Optics letters.

[27]  Cees Dekker,et al.  Optical tweezers for force measurements on DNA in nanopores , 2006 .

[28]  Cees Dekker,et al.  Direct force measurements on DNA in a solid-state nanopore , 2006 .

[29]  E. S. Snow,et al.  Proximal probe lithography and surface modification , 1996 .

[30]  Henry I. Smith,et al.  Dynamic alignment control for fluid-immersion lithographies using interferometric-spatial-phase imaging , 2005 .

[31]  D. Lynch,et al.  Handbook of Optical Constants of Solids , 1985 .

[32]  W. Greenleaf,et al.  Direct observation of base-pair stepping by RNA polymerase , 2005, Nature.