Nanoporous alumina as templates for multifunctional applications

Due to its manufacturing and size tailoring ease, porous anodic alumina (PAA) templates are an elegant physical-chemical nanopatterning approach and an emergent alternative to more sophisticated and expensive methods currently used in nanofabrication. In this review, we will describe the ground work on the fabrication methods of PAA membranes and PAA-based nanostructures. We will present the specificities of the electrochemical growth processes of multifunctional nanomaterials with diversified shapes (e.g., nanowires and nanotubes), and the fabrication techniques used to grow ordered nanohole arrays. We will then focus on the fabrication, properties and applications of magnetic nanostructures grown on PAA and illustrate their dependence on internal (diameter, interpore distance, length, composition) and external (temperature and applied magnetic field intensity and direction) parameters. Finally, the most outstanding experimental findings on PAA-grown nanostructures and their trends for technological appl...

[1]  Zhi-guo Liu,et al.  Perovskite oxide nanotubes: synthesis, structural characterization, properties and applications , 2010 .

[2]  L. Clime,et al.  First-Order Reversal Curves Diagrams of Ferromagnetic Soft Nanowire Arrays , 2006, IEEE Transactions on Magnetics.

[3]  M. Vázquez,et al.  CROSSOVER BETWEEN MAGNETIC REVERSAL MODES IN ORDERED Ni AND Co NANOTUBE ARRAYS , 2012 .

[4]  J. Ansermet,et al.  Giant magnetoresistance of nanowires of multilayers , 1994 .

[5]  I. Mönch,et al.  Electrochemical Deposition of Co(Cu)/Cu Multilayered Nanowires , 2013 .

[6]  R. B. Mason Factors Affecting the Formation of Anodic Oxide Coatings in Sulfuric Acid Electrolytes , 1955 .

[7]  Qingfang Liu,et al.  Influence of crystal orientation on magnetic properties of hcp Co nanowire arrays , 2009 .

[8]  V. Parkhutik,et al.  Theoretical modelling of porous oxide growth on aluminium , 1992 .

[9]  J. Escrig,et al.  Crossover between two different magnetization reversal modes in arrays of iron oxide nanotubes , 2008, 1106.2833.

[10]  T. Fisher,et al.  Independently addressable fields of porous anodic alumina embedded in SiO2 on Si , 2008 .

[11]  L. Schultz,et al.  Towards smooth and pure iron nanowires grown by electrodeposition in self-organized alumina membranes , 2010 .

[12]  Viktor A. Podolskiy,et al.  Metamaterial photonic funnels for subdiffraction light compression and propagation , 2006 .

[13]  Ulrich Gösele,et al.  Spontaneous Current Oscillations during Hard Anodization of Aluminum under Potentiostatic Conditions , 2010 .

[14]  P. Vavassori,et al.  Lattice symmetry and magnetization reversal in micron-size antidot arrays in Permalloy film , 2002 .

[15]  Sang Bok Lee,et al.  Inorganic hollow nanoparticles and nanotubes in nanomedicine Part 1. Drug/gene delivery applications. , 2007, Drug discovery today.

[16]  K. Shimizu,et al.  A novel marker for the determination of transport numbers during anodic barrier oxide growth on aluminium , 1991 .

[17]  X. She,et al.  Synthesis and Growth Mechanism of Ni Nanotubes and Nanowires , 2009, Nanoscale research letters.

[18]  Kenji Fukuda,et al.  Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina , 1995, Science.

[19]  I. Mönch,et al.  Spin-coherent transport in ferromagnetically contacted carbon nanotubes , 2002 .

[20]  D Petit,et al.  Magnetic Domain-Wall Logic , 2005, Science.

[21]  L. Malkinski,et al.  Synthesis of mild–hard AAO templates for studying magnetic interactions between metal nanowires , 2010 .

[22]  C. Ross,et al.  Wafer-scale Ni imprint stamps for porous alumina membranes based on interference lithography. , 2006, Small.

[23]  A. Ramazani,et al.  Optimum self-ordered nanopore arrays with 130–270 nm interpore distances formed by hard anodization in sulfuric/oxalic acid mixtures , 2007 .

[24]  Jimmy Xu,et al.  Fabrication of highly ordered metallic nanowire arrays by electrodeposition , 2001 .

[25]  G. Thompson,et al.  Fundamental studies elucidating anodic barrier-type film growth on aluminium , 1985 .

[26]  Luc Piraux,et al.  Study of the magnetization reversal in individual nickel nanowires , 2000 .

[27]  M. Vázquez,et al.  Remanence of Ni nanowire arrays: Influence of size and labyrinth magnetic structure , 2007, 0710.5757.

[28]  R. Ruoff,et al.  Chemical Vapor Deposition Based Synthesis of Carbon Nanotubes and Nanofibers Using a Template Method , 1998 .

[29]  Robert C. Davis,et al.  Integrated three-dimensional microelectromechanical devices from processable carbon nanotube wafers. , 2008, Nature nanotechnology.

[30]  E. Pierstorff,et al.  Induction of Cell Death by Magnetic Actuation of Nickel Nanowires Internalized by Fibroblasts , 2008 .

[31]  Kornelius Nielsch,et al.  Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina , 1998 .

[32]  G. Ozin,et al.  Highly Ordered Nanosphere Imprinted Nanochannel Alumina (NINA) , 2004 .

[33]  Gustaaf Borghs,et al.  Study of the demagnetization and optimization of the magnetic field of perpendicular ferromagnetic thin films usingesub-μ m lithography , 1993 .

[34]  Ralf B. Wehrspohn,et al.  Mechanism of guided self-organization producing quasi-monodomain porous alumina , 2005 .

[35]  G. Bartal,et al.  An optical cloak made of dielectrics. , 2009, Nature materials.

[36]  U. Maver,et al.  Electrochemical synthesis and characterization of Fe70Pd30 nanotubes for drug-delivery applications , 2012 .

[37]  Zhaowei Liu,et al.  Optical Negative Refraction in Bulk Metamaterials of Nanowires , 2008, Science.

[38]  M. Vázquez,et al.  Dependence of magnetization process on thickness of Permalloy antidot arrays , 2011 .

[39]  Fernando Luis,et al.  Low-temperature study of the magnetization reversal and magnetic anisotropy of Fe, Ni, and Co nanowires , 2001 .

[40]  Robert M. Metzger,et al.  On the Growth of Highly Ordered Pores in Anodized Aluminum Oxide , 1998 .

[41]  B. Ilic,et al.  Domain formation in arrays of square holes in an Fe film , 2002 .

[42]  J. A. C. Bland,et al.  Magnetic domain formation in lithographically defined antidot Permalloy arrays , 1997 .

[43]  M. Vázquez,et al.  Ni growth inside ordered arrays of alumina nanopores: Enhancing the deposition rate , 2012 .

[44]  Victor Vega,et al.  An effective method to probe local magnetostatic properties in a nanometric FePd antidot array , 2011 .

[45]  Hao Zeng,et al.  Structure and magnetic properties of ferromagnetic nanowires in self-assembled arrays , 2002 .

[46]  Adriele Prina-Mello,et al.  Internalization of ferromagnetic nanowires by different living cells , 2006, Journal of nanobiotechnology.

[47]  M. Vázquez,et al.  Magnetic properties of densely packed arrays of Ni nanowires as a function of their diameter and lattice parameter , 2004 .

[48]  S. Lee,et al.  Hyperthermia with magnetic nanowires for inactivating living cells. , 2008, Journal of nanoscience and nanotechnology.

[49]  Bin Sun,et al.  Recent advances in solar cells based on one-dimensional nanostructure arrays. , 2012, Nanoscale.

[50]  Hao‐Li Zhang,et al.  Magnetic properties and magnetization reversal of α-Fe nanowires deposited in alumina film , 2000 .

[51]  Ralf B. Wehrspohn,et al.  Hexagonally ordered 100 nm period nickel nanowire arrays , 2001 .

[52]  Liduo Wang,et al.  Generation and growth mechanism of metal (Fe, Co, Ni) nanotube arrays. , 2006, Chemphyschem : a European journal of chemical physics and physical chemistry.

[53]  M. Vázquez,et al.  Magnetic anisotropy in CoNi nanowire arrays: Analytical calculations and experiments , 2012 .

[54]  Vortex-rectification effects in films with periodic asymmetric pinning. , 2005, Physical review letters.

[55]  Y. Lei,et al.  Large-scale highly ordered arrays of freestanding magnetic nanowires , 2012 .

[56]  Xue-wei Wang,et al.  Electrochemically synthesis and magnetic properties of Ni nanotube arrays with small diameter , 2008 .

[57]  K. Nielsch,et al.  Domain wall control in wire-tube nanoelements , 2013 .

[58]  V. Prida,et al.  Magneto-thermopower and magnetoresistance of single Co-Ni alloy nanowires , 2013 .

[59]  Marisol Martín-González,et al.  High-aspect-ratio and highly ordered 15-nm porous alumina templates. , 2013, ACS applied materials & interfaces.

[60]  W. Shen,et al.  Fabrication of highly ordered nanoporous alumina films by stable high-field anodization , 2006 .

[61]  L. Shen,et al.  The magnetic anisotropy and domain structure of permalloy antidot arrays , 2000 .

[62]  Zhijun Zhang,et al.  Comparative study in fabrication and magnetic properties of FeNi alloy nanowires and nanotubes , 2013 .

[63]  P. Mcguiness,et al.  Electrochemical syntheses of soft and hard magnetic Fe50Pd50-based nanotubes and their magnetic characterization , 2011 .

[64]  Self-assembled antidots in La2/3Sr1/3MnO3 thin films , 2010 .

[65]  Yu-Ming Lin,et al.  Formation of Thick Porous Anodic Alumina Films and Nanowire Arrays on Silicon Wafers and Glass , 2003 .

[66]  Albert Fert,et al.  Giant magnetoresistance in magnetic multilayered nanowires , 1994 .

[67]  M. Vázquez,et al.  Nanoscale Topography: A Tool to Enhance Pore Order and Pore Size Distribution in Anodic Aluminum Oxide , 2011 .

[68]  H. Asoh,et al.  Self-Ordering of Anodic Porous Alumina Induced by Local Current Concentration: Burning , 2004 .

[69]  A. P. Espejo,et al.  Magnetic properties of arrays of nanowires: Anisotropy, interactions, and reversal modes , 2010 .

[70]  D. Baldomir,et al.  Interplay between magnetic anisotropy and dipolar interaction in one-dimensional nanomagnets: Optimized magnetocaloric effect , 2012 .

[71]  Zheng Xu,et al.  An Easy Way to Construct an Ordered Array of Nickel Nanotubes: The Triblock‐Copolymer‐Assisted Hard‐Template Method , 2006 .

[72]  Reinhard Neumann,et al.  Tuning the Geometrical and Crystallographic Characteristics of Bi2Te3 Nanowires by Electrodeposition in Ion-Track Membranes , 2012 .

[73]  A. Ngan,et al.  Precise Control of Nanohoneycomb Ordering over Anodic Aluminum Oxide of Square Centimeter Areas , 2011 .

[74]  P. Ziemann,et al.  Switching modes in easy and hard axis magnetic reversal in a self-assembled antidot array , 2013, Nanotechnology.

[75]  Marisol Martín-González,et al.  Nanoengineering thermoelectrics for 21st century: Energy harvesting and other trends in the field , 2013 .

[76]  G. J. Snyder,et al.  Complex thermoelectric materials. , 2008, Nature materials.

[77]  Lucía Gutiérrez,et al.  Biological applications of magnetic nanoparticles. , 2012, Chemical Society reviews.

[78]  Wei Wang,et al.  Manipulating Growth of Thermoelectric Bi2Te3/Sb Multilayered Nanowire Arrays , 2008 .

[79]  J. Dupont,et al.  The influence of aluminum grain size on alumina nanoporous structure , 2010 .

[80]  C. Chien,et al.  Fabrication and Magnetic Properties of Arrays of Metallic Nanowires , 1993, Science.

[81]  P. Crozat,et al.  Experimental demonstration of complete photonic band gap in graphite structure , 1997 .

[82]  G. C. Wood,et al.  The morphology and mechanism of formation of porous anodic films on aluminium , 1970, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[83]  K. Ounadjela,et al.  Magnetization processes in nickel and cobalt electrodeposited nanowires , 1997 .

[84]  M. Knez,et al.  Ferromagnetic nanotubes by atomic layer deposition in anodic alumina membranes , 2007 .

[85]  R. C. Furneaux,et al.  The formation of controlled-porosity membranes from anodically oxidized aluminium , 1989, Nature.

[86]  M. Vázquez,et al.  Characterization of electrodeposited Ni and Ni80Fe20 nanowires , 2008 .

[87]  S. Tajima Luminescence, breakdown and colouring of anodic oxide films on aluminium , 1977 .

[88]  M. Muhammed,et al.  Differences in the magnetic properties of Co, Fe, and Ni 250-300 nm wide nanowires electrodeposited in amorphous anodized alumina templates , 2005 .

[89]  Ronald Gronsky,et al.  Direct Electrodeposition of Highly Dense 50 nm Bi2Te3-ySey Nanowire Arrays , 2003 .

[90]  P. Melentiev,et al.  Giant optical nonlinearity of a single plasmonic nanostructure. , 2013, Optics express.

[91]  D. Smith,et al.  Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors. , 2002, Physical Review Letters.

[92]  V. Prida,et al.  Constrained Order in Nanoporous Alumina with High Aspect Ratio: Smart Combination of Interference Lithography and Hard Anodization , 2014 .

[93]  A. Stancu,et al.  Method for magnetic characterization of nanowire structures , 2004, IEEE Transactions on Magnetics.

[94]  L. Piraux,et al.  Double ferromagnetic resonance and configuration-dependent dipolar coupling in unsaturated arrays of bistable magnetic nanowires , 2010 .

[95]  Kornelius Nielsch,et al.  Fast fabrication of long-range ordered porous alumina membranes by hard anodization , 2006, Nature materials.

[96]  B. Stadler,et al.  Large-scale ordering of porous Si using anodic aluminum oxide grown by directed self-assembly , 2006 .

[97]  J. Escrig,et al.  Angular dependence of coercivity in magnetic nanotubes , 2007, 0710.5710.

[98]  M. Lukin,et al.  Single-photon nonlinear optics with graphene plasmons. , 2013, Physical review letters.

[99]  T. Tamamura,et al.  Square and Triangular Nanohole Array Architectures in Anodic Alumina , 2001 .

[100]  Y. Ha,et al.  Extended self-ordering regime in hard anodization and its application to make asymmetric AAO membranes for large pitch-distance nanostructures , 2013, Nanotechnology.

[101]  M. Moskovits,et al.  Fabrication of Nanometer‐Scale Patterns by Ion‐Milling with Porous Anodic Alumina Masks , 2000 .

[102]  N. J. Gerein,et al.  Effect of ac electrodeposition conditions on the growth of high aspect ratio copper nanowires in porous aluminum oxide templates. , 2005, The journal of physical chemistry. B.

[103]  In-Kyu Park,et al.  Multifunctional silica nanotubes for dual-modality gene delivery and MR imaging. , 2011, Biomaterials.

[104]  Minhao Yan,et al.  Interactions between magnetic nanowires and living cells: uptake, toxicity, and degradation. , 2011, ACS nano.

[105]  I. Schuller,et al.  Tuning exchange bias in Ni/FeF2 heterostructures using antidot arrays , 2009 .

[106]  K. Nielsch,et al.  Enhanced magneto-thermoelectric power factor of a 70 nm Ni-nanowire , 2012 .

[107]  J. Rogers,et al.  Si/Ge double-layered nanotube array as a lithium ion battery anode. , 2012, ACS nano.

[108]  Andreas Offenhäusser,et al.  Fabrication of large-scale patterned gold-nanopillar arrays on a silicon substrate using imprinted porous alumina templates. , 2006, Small.

[109]  S. Whittenburg,et al.  Size Dependence of Static and Dynamic Magnetic Properties in Nanoscale Square Permalloy Antidot Arrays , 2007 .

[110]  M. Vázquez,et al.  Geometry-dependent magnetization reversal mechanism in ordered Py antidot arrays , 2011 .

[111]  Gwyn P. Williams,et al.  Structure and magnetic properties of Fe-Co nanowires in self-assembled arrays , 2002 .

[112]  V. Prida,et al.  Tuning the magnetic anisotropy of Co–Ni nanowires: comparison between single nanowires and nanowire arrays in hard-anodic aluminum oxide membranes , 2012, Nanotechnology.

[113]  D. Grundler,et al.  Localization, confinement, and field-controlled propagation of spin waves in , 2008 .

[114]  J. Escrig,et al.  Angular dependence of magnetic properties in Ni nanowire arrays , 2009, 1010.2264.

[115]  S. Na,et al.  Electrochemical Synthesis of Magnetostrictive Fe–Ga/Cu Multilayered Nanowire Arrays with Tailored Magnetic Response , 2011 .

[116]  Martin Steinhart,et al.  Structural engineering of nanoporous anodic aluminium oxide by pulse anodization of aluminium. , 2008, Nature nanotechnology.

[117]  N. Peranio,et al.  Stoichiometry Controlled, Single‐Crystalline Bi2Te3 Nanowires for Transport in the Basal Plane , 2012 .

[118]  M. Sánchez,et al.  Enhancement of anomalous codeposition in the synthesis of Fe–Ni alloys in nanopores , 2013 .

[119]  M. Vázquez,et al.  Electrochemical synthesis and magnetic characterization of periodically modulated Co nanowires , 2014, Nanotechnology.

[120]  M. Vázquez,et al.  Magnetic anisotropy in ordered textured Co nanowires , 2012 .

[121]  Grzegorz D Sulka,et al.  Distributed Bragg reflector based on porous anodic alumina fabricated by pulse anodization , 2012, Nanotechnology.

[122]  Broz,et al.  Nucleation of magnetization reversal via creation of pairs of Bloch walls. , 1990, Physical review letters.

[123]  M. P. Proenca,et al.  Nanopore formation and growth in phosphoric acid Al anodization , 2008 .

[124]  Stanislaus S. Wong,et al.  Supplementary Information " Synthesis and Characterization of Multiferroic Bifeo 3 Nanotubes " , 2022 .

[125]  N. Mott,et al.  A mechanism for the formation of porous anodic oxide films on aluminium , 1959 .

[126]  R. Skomski Exact nucleation modes in arrays of magnetic particles , 2002 .

[127]  Xiufeng Han,et al.  Structural and Magnetic Properties of Various Ferromagnetic Nanotubes , 2009 .

[128]  A. Ramazani,et al.  Fabrication of Self-Ordered Nanoporous Alumina with 69–115 nm Interpore Distances in Sulfuric/Oxalic Acid Mixtures by Hard Anodization , 2010 .

[129]  G. Patermarakis Aluminium anodising in low acidity sulphate baths: growth mechanism and nanostructure of porous anodic films , 2006 .

[130]  L. Vila,et al.  Controlled changes in the microstructure and magnetic anisotropy in arrays of electrodeposited Co nanowires induced by the solution pH , 2004 .

[131]  Vijay P. Singh,et al.  Barrier layer non-uniformity effects in anodized aluminum oxide nanopores on ITO substrates , 2010, Nanotechnology.

[132]  M. Vázquez,et al.  Magnetic behaviour of densely packed hexagonal arrays of Ni nanowires: Influence of geometric characteristics , 2005 .

[133]  M. Vázquez,et al.  About the dipolar approach in magnetostatically coupled bistable magnetic micro and nanowires , 2003, Digest of INTERMAG 2003. International Magnetics Conference (Cat. No.03CH37401).

[134]  Amit Kumar,et al.  Magnetic nanowires by electrodeposition within templates , 2010 .

[135]  G. Sulka,et al.  Temperature influence on well-ordered nanopore structures grown by anodization of aluminium in sulphuric acid , 2007 .

[136]  N. Myung,et al.  Fabrication Method for Thermoelectric Nanodevices , 2005 .

[137]  Growth of ordered, single-domain, alumina nanopore arrays with holographically patterned aluminum films , 2002 .

[138]  Dusan Losic,et al.  Porous alumina with shaped pore geometries and complex pore architectures fabricated by cyclic anodization. , 2009, Small.

[139]  Wenzhong Shen,et al.  Anion impurities in porous alumina membranes: Existence and functionality , 2007 .

[140]  H. Kronmüller,et al.  Statistical theory of the pinning of Bloch walls by randomly distributed defects , 1975 .

[141]  C C Wang,et al.  Magnetic antidot nanostructures: effect of lattice geometry , 2006, Nanotechnology.

[142]  D. Grundler,et al.  Magnonics: Spin Waves on the Nanoscale , 2009 .

[143]  R. Campo Alegre,et al.  Birefringence swap at the transition to hyperbolic dispersion in metamaterials , 2012 .

[144]  M. Dresselhaus,et al.  Thermoelectric figure of merit of a one-dimensional conductor. , 1993, Physical review. B, Condensed matter.

[145]  S. Parkin,et al.  Magnetic Domain-Wall Racetrack Memory , 2008, Science.

[146]  C. Sousa,et al.  A versatile synthesis method of dendrites-free segmented nanowires with a precise size control , 2012, Nanoscale Research Letters.

[147]  A. Rauf,et al.  The effects of electropolishing on the nanochannel ordering of the porous anodic alumina prepared in oxalic acid , 2009 .

[148]  Viktor A. Podolskiy,et al.  Nonmagnetic nanocomposites for optical and infrared negative-refractive-index media , 2006 .

[149]  L. Kong,et al.  A facile approach to preparation of nanostripes on the electropolished aluminum surface , 2005 .

[150]  Martin Moskovits,et al.  Fe Nanowires in Nanoporous Alumina: Geometric Effect versus Influence of Pore Walls , 2008 .

[151]  A. Hernando,et al.  Interplay between the magnetic anisotropy contributions of cobalt nanowires , 2009, 0910.4285.

[152]  Zhen Yao,et al.  Large-area Sb2Te3 nanowire arrays. , 2005, The journal of physical chemistry. B.

[153]  J. Escrig,et al.  Magnetic properties of cylindrical diameter modulated Ni80Fe20 nanowires: interaction and coercive fields. , 2013, Nanoscale.

[154]  Frank Müller,et al.  Self-Organized Formation of Hexagonal Pore Structures in Anodic Alumina , 1998 .

[155]  Chun-Guey Wu,et al.  Magnetic nanowires via template electrodeposition , 2006 .

[156]  J. Escrig,et al.  Magnetic reversal of cylindrical nickel nanowires with modulated diameters , 2011 .

[157]  R. Cowburn,et al.  Room temperature magnetic quantum cellular automata , 2000, Science.

[158]  L. Piraux,et al.  Dipolar interaction in arrays of magnetic nanotubes , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[159]  S. E. Gilbert,et al.  Magnetoresistance of Ferromagnetic Nanowires , 1999 .

[160]  Ali Eftekhari,et al.  Nanostructured Materials in Electrochemistry , 2008 .

[161]  C. C. Wang,et al.  Magnetoresistance behavior of nanoscale antidot arrays , 2005 .

[162]  J. Joo,et al.  Fabrication and magnetic characteristics of hybrid double walled nanotube of ferromagnetic nickel encapsulated conducting polypyrrole , 2007 .

[163]  G. Thompson,et al.  Porous anodic film formation on aluminium , 1981, Nature.

[164]  L. Cagnon,et al.  Reduction of magnetostatic interactions in self-organized arrays of nickel nanowires using atomic layer deposition , 2011, 1101.1753.

[165]  M. Vázquez,et al.  Magnetic and transport properties in ordered arrays of permalloy antidots and thin films , 2010 .

[166]  J. Wegrowe,et al.  Spin-dependent thermopower in Co/Cu multilayer nanowires , 2004 .

[167]  C. Ross,et al.  CoCrPt antidot arrays with perpendicular magnetic anisotropy made on anodic alumina templates , 2009 .

[168]  J. Escrig,et al.  Reversal modes and magnetostatic interactions in Fe3O4/ZrO2/Fe3O4 multilayer nanotubes , 2012, Nanotechnology.

[169]  Dongdong Li,et al.  Template‐based Synthesis and Magnetic Properties of Cobalt Nanotube Arrays , 2008 .

[170]  Ralf B. Wehrspohn,et al.  Self-ordering Regimes of Porous Alumina: The 10% Porosity Rule , 2002 .

[171]  Zhibo Zhang,et al.  Direct formation of self-assembled nanoporous aluminium oxide on SiO2 and Si substrates , 2002 .

[172]  J. Escrig,et al.  Experimental evidence for an angular dependent transition of magnetization reversal modes in magnetic nanotubes , 2011 .

[173]  Adriele Prina-Mello,et al.  High content analysis of the biocompatibility of nickel nanowires , 2009 .

[174]  M. Vázquez,et al.  Magnetization reversal in Co‐base nanowire arrays , 2011 .

[175]  C. Lai,et al.  A large-area mesoporous array of magnetic nanostructure with perpendicular anisotropy integrated on Si wafers , 2008, Nanotechnology.

[176]  Sung Joon Park,et al.  Controlled drug release using nanoporous anodic aluminum oxide on stent , 2007 .

[177]  M. Vázquez,et al.  Magnetic domain structure of nanohole arrays in Ni films , 2007 .

[178]  M. Vázquez,et al.  Correlations among magnetic, electrical and magneto-transport properties of NiFe nanohole arrays , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[179]  J. Escrig,et al.  Geometry dependence of coercivity in Ni nanowire arrays , 2008, Nanotechnology.

[180]  L. Schultz,et al.  Competition between shape anisotropy and magnetoelastic anisotropy in Ni nanowires electrodeposited within alumina templates , 2006 .

[181]  D. Laughlin,et al.  Time and orientation dependence of ordering in anodized aluminum for self-organized magnetic arrays , 2000 .

[182]  Sachiko Ono,et al.  Self-ordering of anodic porous alumina formed in organic acid electrolytes , 2005 .

[183]  N. Myung,et al.  Synthesis and characterization of electrodeposited permalloy (Ni80Fe20)/Cu multilayered nanowires , 2010 .

[184]  M. Vázquez,et al.  X-ray photoemission electron microscopy studies of local magnetization in Py antidot array thin films , 2012 .

[185]  B. Ilic,et al.  Magnetization reversal in an Fe film with an array of elliptical holes on a square lattice , 2003 .

[186]  I. Aranson,et al.  Formation of self-organized nanoscale porous structures in anodic aluminum oxide , 2006 .

[187]  Pattern selection during electropolishing due to double-layer effects. , 1999, Chaos.

[188]  Philip N. Bartlett,et al.  Magnetic antidot arrays from self-assembly template methods , 2003 .

[189]  K. Alameh,et al.  Plasmon-mediated magneto-optical transparency , 2013, Nature Communications.

[190]  R. Budiman,et al.  Fabrication and Characterization of Porous Anodic Alumina Films from Impure Aluminum Foils , 2007 .

[191]  Isaak D. Mayergoyz,et al.  Hysteresis models from the mathematical and control theory points of view , 1985 .

[192]  M. Vázquez,et al.  Arrays of Electroplated Multilayered Co/Cu Nanowires with Controlled Magnetic Anisotropy , 2005 .

[193]  B. Scharifker,et al.  Theoretical and experimental studies of multiple nucleation , 1983 .

[194]  Ronald Gronsky,et al.  Structure of Bismuth Telluride Nanowire Arrays Fabricated by Electrodeposition into Porous Anodic Alumina Templates , 2003 .

[195]  U. Gösele,et al.  A continuous process for structurally well-defined Al2O3 nanotubes based on pulse anodization of aluminum. , 2008, Nano letters.

[196]  E. Narimanov,et al.  Bulk photonic metamaterial with hyperbolic dispersion , 2008, 0809.1028.

[197]  M. Vázquez,et al.  Magnetic interactions and reversal mechanisms in Co nanowire and nanotube arrays , 2013 .

[198]  Z. Su,et al.  Investigation of the pore formation in anodic aluminium oxide , 2008 .

[199]  M. Vázquez,et al.  Co nanostructures in ordered templates: comparative FORC analysis , 2013, Nanotechnology.

[200]  Xue-wei Wang,et al.  Template-based synthesis and magnetic properties of Ni nanotube arrays with different diameters , 2011 .

[201]  Z. Su,et al.  Formation Mechanism of Porous Anodic Aluminium and Titanium Oxides , 2008 .

[202]  Hsueh-Chia Chang,et al.  Nanoscale pore formation dynamics during aluminum anodization. , 2002, Chaos.

[203]  J. A. C. Bland,et al.  Geometric coercivity scaling in magnetic thin film antidot arrays , 2002 .

[204]  Sang Bok Lee,et al.  Magnetic nanotubes for magnetic-field-assisted bioseparation, biointeraction, and drug delivery. , 2005, Journal of the American Chemical Society.

[205]  K. Nielsch,et al.  Anisotropic magnetothermal resistance in Ni nanowires , 2013 .

[206]  M. Vázquez,et al.  Exchange bias, training effect, and bimodal distribution of blocking temperatures in electrodeposited core-shell nanotubes , 2013 .

[207]  Nakanishi,et al.  Quantum interference effects in antidot lattices in magnetic fields. , 1996, Physical review. B, Condensed matter.

[208]  M. Matsuo,et al.  Transfer of nanoporous pattern of anodic porous alumina into Si substrate , 2003 .

[209]  Wai Kin Chim,et al.  Shape and Size Control of Regularly Arrayed Nanodots Fabricated Using Ultrathin Alumina Masks , 2005 .

[210]  A. Adeyeye,et al.  Magnetic properties of arrays of “holes” in Ni80Fe20films , 1997 .

[211]  M. P. Proenca,et al.  pH sensitive silica nanotubes as rationally designed vehicles for NSAIDs delivery. , 2012, Colloids and surfaces. B, Biointerfaces.

[212]  M. Vázquez,et al.  Tailoring the physical properties of thin nanohole arrays grown on flat anodic aluminum oxide templates , 2012, Nanotechnology.

[213]  J. Escrig,et al.  Angular dependence of the transverse and vortex modesin magnetic nanotubes , 2008 .

[214]  Riccardo Hertel,et al.  Micromagnetic simulations of magnetostatically coupled Nickel nanowires , 2001 .

[215]  M. Vázquez,et al.  Delocalized versus localized magnetization reversal in template-grown Ni and Ni80Fe20 nanowires , 2010 .

[216]  Ewa Wäckelgård,et al.  Oxidation Kinetics of Nickel Particles: Comparison Between Free Particles and Particles in an Oxide Matrix , 2000 .

[217]  H. Zeng,et al.  Effects of surface morphology on magnetic properties of Ni nanowire arrays in self-ordered porous alumina , 2002 .

[218]  Zheng Xu,et al.  Template Synthesis of an Array of Nickel Nanotubules and Its Magnetic Behavior , 2001 .

[219]  N. Myung,et al.  Transport of living cells with magnetically assembled nanowires , 2007, Biomedical microdevices.

[220]  Toshiaki Tamamura,et al.  Highly ordered nanochannel-array architecture in anodic alumina , 1997 .

[221]  T. C. Downie,et al.  Anodic oxide films on aluminum , 1969 .

[222]  L. Vila,et al.  Tailoring of the c-axis orientation and magnetic anisotropy in electrodeposited Co nanowires , 2004 .

[223]  M. Vázquez,et al.  Magnetic and structural properties of fcc/hcp bi-crystalline multilayer Co nanowire arrays prepared by controlled electroplating , 2011 .

[224]  M. Demand,et al.  Dipolar interactions in arrays of nickel nanowires studied by ferromagnetic resonance , 2001 .

[225]  Meier,et al.  Nucleation of Magnetization Reversal in Individual Nanosized Nickel Wires. , 1996, Physical review letters.

[226]  S. R. Harutyunyan,et al.  Fabrication and Characterization of Electrodeposited Bismuth Telluride Films and Nanowires , 2010 .

[227]  C. Lai,et al.  Controlling magnetization reversal in Co/Pt nanostructures with perpendicular anisotropy , 2009, 0901.4562.

[228]  David J. Sellmyer,et al.  TOPICAL REVIEW: Magnetism of Fe, Co and Ni nanowires in self-assembled arrays , 2001 .

[229]  M. P. Proenca,et al.  Tunning pore filling of anodic alumina templates by accurate control of the bottom barrier layer thickness , 2011, Nanotechnology.

[230]  J. Biskupek,et al.  Magnetic, Multilayered Nanotubes of Low Aspect Ratios for Liquid Suspensions , 2011 .

[231]  Joy Y. Cheng,et al.  Multilayer magnetic antidot arrays from block copolymer templates , 2008 .

[232]  M. L. Reed,et al.  Observation of isolated nanopores formed by patterned anodic oxidation of aluminum thin films , 2006 .

[233]  M. Reiche,et al.  Fabrication of monodomain alumina pore arrays with an interpore distance smaller than the lattice constant of the imprint stamp , 2003 .

[234]  E. Wohlfarth,et al.  A mechanism of magnetic hysteresis in heterogeneous alloys , 1991 .

[235]  M. Vázquez,et al.  Tailoring of magnetocaloric response in nanostructured materials: Role of anisotropy , 2008 .

[236]  Atsuo Yasumori,et al.  Large-Scale Fabrication of Ordered Nanoporous Alumina Films with Arbitrary Pore Intervals by Critical-Potential Anodization , 2006 .

[237]  R. Victora,et al.  Predicted time dependence of the switching field for magnetic materials. , 1989, Physical review letters.

[238]  Hsueh-Chia Chang,et al.  Pattern formation during electropolishing , 1997 .

[239]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[240]  M. Vázquez,et al.  Interaction effects in Permalloy nanowire systems , 2008 .

[241]  Thermoelectrical study of ferromagnetic nanowire structures , 2006 .

[242]  C. Olbrich,et al.  Optical imaging in drug discovery and diagnostic applications. , 2005, Advanced drug delivery reviews.

[243]  Gerald J. Meyer,et al.  Cell manipulation using magnetic nanowires , 2002 .

[244]  Dusan Losic,et al.  Preparation of porous anodic alumina with periodically perforated pores. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[245]  Frank Müller,et al.  Self-organized formation of hexagonal pore arrays in anodic alumina , 1998 .

[246]  H. Bertram,et al.  Effect of temperature and cubic anisotropy on the switching field of cylindrical Ni particles , 2002 .

[247]  M. Vázquez,et al.  Coercivity of ordered arrays of magnetic Co nanowires with controlled variable lengths , 2011 .

[248]  A. Abdi,et al.  Magnetoresistance and switching of electrochemically etched Ni wires , 2003 .

[249]  C. Ross,et al.  Effects of the magnetoelastic anisotropy in Ni nanowire arrays , 2008 .

[250]  P. Gaunt Magnetic viscosity and thermal activation energy , 1986 .

[251]  A. W. Maijenburg,et al.  Au coated Ni nanowires with tuneable dimensions for biomedical applications. , 2013, Journal of materials chemistry. B.

[252]  H. Xing,et al.  Novel AAO films and hollow nanostructures fabricated by ultra-high voltage hard anodization , 2010 .

[253]  K. Wada,et al.  Fabrication of Ideally Ordered Nanoporous Alumina Films and Integrated Alumina Nanotubule Arrays by High‐Field Anodization , 2005 .

[254]  Y. P. Lee,et al.  Tailoring of magnetic properties of patterned cobalt antidots by simple manipulation of lattice symmetry , 2010 .

[255]  A. Yelon,et al.  First-order reversal curve diagrams of magnetic entities with mean interaction field: A physical analysis perspective , 2008 .

[256]  Won Bo Lee,et al.  Ordered Ni nanohole arrays with engineered geometrical aspects and magnetic anisotropy , 2007 .

[257]  Robert Langer,et al.  Nanotechnology in drug delivery and tissue engineering: from discovery to applications. , 2010, Nano letters.

[258]  Yimei Zhu,et al.  On the magnetostatic interactions between nanoparticles of arbitrary shape , 2004 .

[259]  Fernando Castaño,et al.  Anisotropy and magnetotransport in ordered magnetic antidot arrays , 2004 .

[260]  M. Vázquez,et al.  Magnetic properties of Co nanopillar arrays prepared from alumina templates , 2013, Nanotechnology.

[261]  J. Barnard,et al.  Nanostructured magnetic networks , 1996 .

[262]  Ionut Enculescu,et al.  Electrochemical Deposition of PbSe1-xTex Nanorod Arrays Using Ion Track Etched Membranes as Template , 2004 .

[263]  T. Rijks,et al.  Semiclassical calculations of the anisotropic magnetoresistance of NiFe-based thin films, wires, and multilayers. , 1995, Physical review. B, Condensed matter.

[264]  Kornelius Nielsch,et al.  Controlled introduction of diameter modulations in arrayed magnetic iron oxide nanotubes. , 2009, ACS nano.

[265]  T. Bein,et al.  Mesoporous Structures Confined in Anodic Alumina Membranes , 2011, Advanced materials.

[266]  C. Lacroix,et al.  Magnetic anisotropy in arrays of Ni, CoFeB, and Ni/Cu nanowires , 2007 .

[267]  C. Sousa,et al.  Influence of surface pre‐treatment in the room temperature fabrication of nanoporous alumina , 2008 .

[268]  Kazuyuki Nishio,et al.  Fabrication of Ordered Arrays of Multiple Nanodots Using Anodic Porous Alumina as an Evaporation Mask , 2000 .

[269]  A. Birner,et al.  Fabrication and Microstructuring of Hexagonally Ordered Two‐Dimensional Nanopore Arrays in Anodic Alumina , 1999 .

[270]  Hui-min Zhang,et al.  Template-Based Electrodeposition Growth Mechanism of Metal Nanotubes , 2013 .

[271]  S. Sridhar,et al.  Superlens imaging theory for anisotropic nanostructured metamaterials with broadband all-angle negative refraction , 2007, 0710.4933.

[272]  Woo-Sung Lee,et al.  Highly ordered porous alumina with tailor-made pore structures fabricated by pulse anodization , 2010, Nanotechnology.

[273]  M. Qiu,et al.  Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances. , 2006, Physical review letters.

[274]  G. Thompson,et al.  Nucleation and growth of porous anodic films on aluminium , 1978, Nature.

[275]  C. Lai,et al.  Enhanced exchange bias in sub-50-nm IrMn/CoFe nanostructure , 2009 .

[276]  T. Veres,et al.  Novel Structure of AAO Film Fabricated by Constant Current Anodization , 2007 .

[277]  Braun,et al.  Thermally activated magnetization reversal in elongated ferromagnetic particles. , 1993 .

[278]  Kornelius Nielsch,et al.  Uniform Nickel Deposition into Ordered Alumina Pores by Pulsed Electrodeposition , 2000 .

[279]  M. Vázquez,et al.  Insights into the role of magnetoelastic anisotropy in the magnetization reorientation of magnetic nanowires , 2011 .

[280]  Caofeng Pan,et al.  Nano-porous anodic aluminium oxide membranes with 6–19 nm pore diameters formed by a low-potential anodizing process , 2007 .

[281]  Eduard Llobet,et al.  Anodic formation of low-aspect-ratio porous alumina films for metal-oxide sensor application , 2006 .

[282]  J. MacManus‐Driscoll,et al.  Controlled, perfect ordering in ultrathin anodic aluminum oxide templates on silicon , 2007 .

[283]  Hao Zeng,et al.  Magnetic localization in transition-metal nanowires , 2000 .

[284]  Pavel A. Belov,et al.  Subwavelength imaging at infrared frequencies using an array of metallic nanorods , 2007 .

[285]  C. Sousa,et al.  Precise control of the filling stages in branched nanopores , 2012 .

[286]  C. Ross,et al.  Origin of transverse magnetization in epitaxial Cu/Ni/Cu nanowire arrays , 2009 .

[287]  G. Thompson,et al.  Anion incorporation and migration during barrier film formation on aluminium , 1987 .