Sedimentology and temporal distribution of microbial mats from Brejo do Espinho, Rio de Janeiro, Brazil
暂无分享,去创建一个
F. Lopes | F. Feder | Loreine Hermida da Silva e Silva | Deise de Oliveira Delfino | M. D. Wanderley
[1] E. Perri,et al. Microbial biomineralization processes forming modern Ca:Mg carbonate stromatolites , 2010 .
[2] R. Reid,et al. Wave and sediment dynamics along a shallow subtidal sandy beach inhabited by modern stromatolites , 2007, Geobiology.
[3] M. Sánchez‐Román,et al. Biomineralization of carbonate and phosphate by moderately halophilic bacteria. , 2007, FEMS microbiology ecology.
[4] B. Laslandes. Reconstitution de la variabilité climatique du littoral fluminense (Rio de janeiro, Brésil) au cours de l'holocène par l'étude de bio-indicateurs (diatomées, coccolithophoridés) , 2007 .
[5] P. Visscher,et al. Lithifying microbial mats in Lagoa Vermelha, Brazil: Modern Precambrian relics? , 2006 .
[6] F. Sylvestre,et al. Hydrological changes related to the variability of tropical South American climate from the Cabo Frio lagoonal system (Brazil) during the last 5000 years , 2005 .
[7] R. Reid,et al. Production and cycling of natural microbial exopolymers (EPS) within a marine stromatolite , 2005 .
[8] L. M. Walter,et al. Role of sulfide oxidation in dolomitization: Sediment and pore-water geochemistry of a modern hypersaline lagoon system , 2004 .
[9] R. Guerrero,et al. Distribution of phototrophic populations and primary production in a microbial mat from the Ebro Delta, Spain. , 2004, International microbiology : the official journal of the Spanish Society for Microbiology.
[10] J. Mckenzie,et al. Bacterial sulfate reduction and salinity: two controls on dolomite precipitation in Lagoa Vermelha and Brejo do Espinho (Brazil) , 2002, Hydrobiologia.
[11] P. Moreira-Turcq. Impact of a low salinity year on the metabolism of a hypersaline coastal lagoon (Brazil) , 2000, Hydrobiologia.
[12] Guillermo Chong,et al. Tapetes microbianos del Salar de Llamará, norte de Chile , 2003 .
[13] N. Noffke,et al. Benthic cyanobacteria and their influence on the sedimentary dynamics of peritidal depositional systems (siliciclastic, evaporitic salty, and evaporitic carbonatic) , 2003 .
[14] P. Visscher,et al. A unique model system of microbial carbonate precipitation: Stromatolites of Lagoa Vermelha, Brazil , 2003 .
[15] G. Zavarzin,et al. Fossil and Recent Biofilms , 2003 .
[16] A. Decho,et al. Extracellular Polymers (EPS) and Calcification within Modern Marine Stromatolites , 2003 .
[17] Carlos Schobbenahus,et al. Sítios geológicos e paleontológicos do Brasil , 2002 .
[18] J. Mckenzie,et al. Bacterially induced dolomite precipitation in anoxic culture experiments , 2000 .
[19] H. Paerl,et al. The role of microbes in accretion, lamination and early lithification of modern marine stromatolites , 2000, Nature.
[20] Robert Riding,et al. Microbial carbonates: the geological record of calcified bacterial–algal mats and biofilms , 2000 .
[21] A. Knoll,et al. Stromatolites in Precambrian carbonates: evolutionary mileposts or environmental dipsticks? , 1999, Annual review of earth and planetary sciences.
[22] Gerard Muyzer,et al. Quantifying Microbial Diversity: Morphotypes, 16S rRNA Genes, and Carotenoids of Oxygenic Phototrophs in Microbial Mats , 1999, Applied and Environmental Microbiology.
[23] L. Land. Failure to Precipitate Dolomite at 25 °C fromDilute Solution Despite 1000-Fold Oversaturation after32 Years , 1998 .
[24] C. F. Barbosa. Reconstituição paleoambiental de fácies lagunares com base em foraminíferos: o nível do mar no Quaternário Superior na área de Cabo Frio, RJ , 1997 .
[25] J. Mckenzie,et al. Microbial mediation of modern dolomite precipitation and diagenesis under anoxic conditions , 1997 .
[26] J. Komárek,et al. Modern approach to the classification system of Cyanophytes 4 - Nostocales , 1989 .