Sedimentology and temporal distribution of microbial mats from Brejo do Espinho, Rio de Janeiro, Brazil

[1]  E. Perri,et al.  Microbial biomineralization processes forming modern Ca:Mg carbonate stromatolites , 2010 .

[2]  R. Reid,et al.  Wave and sediment dynamics along a shallow subtidal sandy beach inhabited by modern stromatolites , 2007, Geobiology.

[3]  M. Sánchez‐Román,et al.  Biomineralization of carbonate and phosphate by moderately halophilic bacteria. , 2007, FEMS microbiology ecology.

[4]  B. Laslandes Reconstitution de la variabilité climatique du littoral fluminense (Rio de janeiro, Brésil) au cours de l'holocène par l'étude de bio-indicateurs (diatomées, coccolithophoridés) , 2007 .

[5]  P. Visscher,et al.  Lithifying microbial mats in Lagoa Vermelha, Brazil: Modern Precambrian relics? , 2006 .

[6]  F. Sylvestre,et al.  Hydrological changes related to the variability of tropical South American climate from the Cabo Frio lagoonal system (Brazil) during the last 5000 years , 2005 .

[7]  R. Reid,et al.  Production and cycling of natural microbial exopolymers (EPS) within a marine stromatolite , 2005 .

[8]  L. M. Walter,et al.  Role of sulfide oxidation in dolomitization: Sediment and pore-water geochemistry of a modern hypersaline lagoon system , 2004 .

[9]  R. Guerrero,et al.  Distribution of phototrophic populations and primary production in a microbial mat from the Ebro Delta, Spain. , 2004, International microbiology : the official journal of the Spanish Society for Microbiology.

[10]  J. Mckenzie,et al.  Bacterial sulfate reduction and salinity: two controls on dolomite precipitation in Lagoa Vermelha and Brejo do Espinho (Brazil) , 2002, Hydrobiologia.

[11]  P. Moreira-Turcq Impact of a low salinity year on the metabolism of a hypersaline coastal lagoon (Brazil) , 2000, Hydrobiologia.

[12]  Guillermo Chong,et al.  Tapetes microbianos del Salar de Llamará, norte de Chile , 2003 .

[13]  N. Noffke,et al.  Benthic cyanobacteria and their influence on the sedimentary dynamics of peritidal depositional systems (siliciclastic, evaporitic salty, and evaporitic carbonatic) , 2003 .

[14]  P. Visscher,et al.  A unique model system of microbial carbonate precipitation: Stromatolites of Lagoa Vermelha, Brazil , 2003 .

[15]  G. Zavarzin,et al.  Fossil and Recent Biofilms , 2003 .

[16]  A. Decho,et al.  Extracellular Polymers (EPS) and Calcification within Modern Marine Stromatolites , 2003 .

[17]  Carlos Schobbenahus,et al.  Sítios geológicos e paleontológicos do Brasil , 2002 .

[18]  J. Mckenzie,et al.  Bacterially induced dolomite precipitation in anoxic culture experiments , 2000 .

[19]  H. Paerl,et al.  The role of microbes in accretion, lamination and early lithification of modern marine stromatolites , 2000, Nature.

[20]  Robert Riding,et al.  Microbial carbonates: the geological record of calcified bacterial–algal mats and biofilms , 2000 .

[21]  A. Knoll,et al.  Stromatolites in Precambrian carbonates: evolutionary mileposts or environmental dipsticks? , 1999, Annual review of earth and planetary sciences.

[22]  Gerard Muyzer,et al.  Quantifying Microbial Diversity: Morphotypes, 16S rRNA Genes, and Carotenoids of Oxygenic Phototrophs in Microbial Mats , 1999, Applied and Environmental Microbiology.

[23]  L. Land Failure to Precipitate Dolomite at 25 °C fromDilute Solution Despite 1000-Fold Oversaturation after32 Years , 1998 .

[24]  C. F. Barbosa Reconstituição paleoambiental de fácies lagunares com base em foraminíferos: o nível do mar no Quaternário Superior na área de Cabo Frio, RJ , 1997 .

[25]  J. Mckenzie,et al.  Microbial mediation of modern dolomite precipitation and diagenesis under anoxic conditions , 1997 .

[26]  J. Komárek,et al.  Modern approach to the classification system of Cyanophytes 4 - Nostocales , 1989 .