Feeling is Understanding: From Affective to Semantic Spaces

Motivated by theories of language development we investigate the contribution of affect to lexical semantics in the context of distributional semantic models (DSMs). The relationship between semantic and affective spaces is computationally modeled for the task of semantic similarity computation between words. It is shown that affective spaces contain salient information for lexical semantic tasks. We further investigate specific semantic relationships whe re affective information plays a prominent role. The relations between semantic similarity and opposition are studied in the framework of a binary classification problem applied for the discrimination of synonyms and antonyms. For the case of antonyms, the use of affective features results in 33% relat ive improvement in classification accuracy compared to the use of semantic features.

[1]  M. Tomasello,et al.  Understanding and sharing intentions: The origins of cultural cognition , 2005, Behavioral and Brain Sciences.

[2]  Eneko Agirre,et al.  A Study on Similarity and Relatedness Using Distributional and WordNet-based Approaches , 2009, NAACL.

[3]  Andrea Esuli,et al.  SENTIWORDNET: A Publicly Available Lexical Resource for Opinion Mining , 2006, LREC.

[4]  John B. Goodenough,et al.  Contextual correlates of synonymy , 1965, CACM.

[5]  Marco Baroni,et al.  Frege in Space: A Program for Composition Distributional Semantics , 2014, LILT.

[6]  Alexandros Potamianos,et al.  Similarity computation using semantic networks created from web-harvested data , 2013, Natural Language Engineering.

[7]  Shrikanth S. Narayanan,et al.  Toward detecting emotions in spoken dialogs , 2005, IEEE Transactions on Speech and Audio Processing.

[8]  M. Bradley,et al.  Affective Norms for English Words (ANEW): Instruction Manual and Affective Ratings , 1999 .

[9]  Graeme Hirst,et al.  Computing Lexical Contrast , 2013, CL.

[10]  T. McNamara Semantic Priming: Perspectives from Memory and Word Recognition , 2005 .

[11]  Michael L. Littman,et al.  Measuring praise and criticism: Inference of semantic orientation from association , 2003, TOIS.

[12]  Steven Skiena,et al.  Lydia: A System for Large-Scale News Analysis , 2005, SPIRE.

[13]  M. Bradley,et al.  Affective Normsfor English Words (ANEW): Stimuli, instruction manual and affective ratings (Tech Report C-1) , 1999 .

[14]  Ehud Rivlin,et al.  Placing search in context: the concept revisited , 2002, TOIS.

[15]  Carlo Strapparava,et al.  WordNet Affect: an Affective Extension of WordNet , 2004, LREC.

[16]  G. Miller,et al.  Contextual correlates of semantic similarity , 1991 .

[17]  P. Salovey,et al.  Emotional Intelligence and Emotional Responses to Hypothetical and Actual Frustrating Stressors , 2009 .

[18]  Philip J. Stone,et al.  Extracting Information. (Book Reviews: The General Inquirer. A Computer Approach to Content Analysis) , 1967 .

[19]  R. Gunderman,et al.  Emotional intelligence. , 2011, Journal of the American College of Radiology : JACR.

[20]  Alessandro Lenci,et al.  Distributional Memory: A General Framework for Corpus-Based Semantics , 2010, CL.

[21]  Preslav Nakov,et al.  SemEval-2013 Task 2: Sentiment Analysis in Twitter , 2013, *SEMEVAL.

[22]  Peter D. Turney Analogy perception applied to seven tests of word comprehension , 2011, J. Exp. Theor. Artif. Intell..

[23]  James L. McClelland,et al.  Semantic Cognition: A Parallel Distributed Processing Approach , 2004 .

[24]  Zellig S. Harris,et al.  Distributional Structure , 1954 .

[25]  Jason Eisner,et al.  Lexical Semantics , 2020, The Handbook of English Linguistics.

[26]  Shrikanth S. Narayanan,et al.  Distributional Semantic Models for Affective Text Analysis , 2013, IEEE Transactions on Audio, Speech, and Language Processing.

[27]  R. Sánchez-Casas,et al.  Affective priming in a lexical decision task: Is there an effect of words' concreteness? , 2014 .

[28]  Philip Resnik,et al.  Using Information Content to Evaluate Semantic Similarity in a Taxonomy , 1995, IJCAI.

[29]  Bing Liu,et al.  Mining and summarizing customer reviews , 2004, KDD.

[30]  Marshall S. Smith,et al.  The general inquirer: A computer approach to content analysis. , 1967 .