The cooler the better: Increased aquatic hyphomycete diversity in subtropical streams along a neotropical latitudinal gradient

[1]  P. O. Fiuza,et al.  Ingoldian fungal assemblages from Brazilian rainforests, shrubland and savanna , 2022, New Zealand Journal of Botany.

[2]  L. U. Hepp,et al.  Influence of environmental predictors on hyphomycete assemblages in subtropical streams , 2021, Acta Oecologica.

[3]  Verónica Ferreira,et al.  Organic-matter decomposition as a bioassessment tool of stream functioning: A comparison of eight decomposition-based indicators exposed to different environmental changes. , 2021, Environmental pollution.

[4]  L. Boyero,et al.  Extreme temperature events alter stream ecosystem functioning , 2021, Ecological Indicators.

[5]  A. O. Medeiros,et al.  Temporal dynamics of organic matter, hyphomycetes and invertebrate communities in a Brazilian savanna stream , 2019, Community Ecology.

[6]  P. O. Fiuza,et al.  Diversity of freshwater hyphomycetes associated with leaf litter of Calophyllum brasiliense in streams of the semiarid region of Brazil , 2019, Mycological Progress.

[7]  K. Sridhar,et al.  Biodiversity of leaf litter fungi in streams along a latitudinal gradient. , 2019, The Science of the total environment.

[8]  F. Guérold,et al.  Seasonal variations overwhelm temperature effects on microbial processes in headwater streams: insights from a temperate thermal spring , 2019, Aquatic Sciences.

[9]  W. L. Araújo,et al.  Influence of water quality on diversity and composition of fungal communities in a tropical river , 2018, Scientific Reports.

[10]  Aingeru Martínez,et al.  Responses of Aquatic Hyphomycetes to Temperature and Nutrient Availability: a Cross-transplantation Experiment , 2018, Microbial Ecology.

[11]  P. O. Fiuza,et al.  Ingoldian fungi of Brazil: some new records and a review including a checklist and a key , 2017 .

[12]  A. O. Medeiros,et al.  The replacement of native plants by exotic species may affect the colonization and reproduction of aquatic hyphomycetes , 2016 .

[13]  Sofia Duarte,et al.  Biogeography of aquatic hyphomycetes: Current knowledge and future perspectives , 2016 .

[14]  L. Boddy,et al.  Aquatic fungal ecology – how does it differ from terrestrial? , 2016 .

[15]  M. Graça,et al.  Aquatic hyphomycetes and litter decomposition in tropical - subtropical low order streams , 2016 .

[16]  W. Kiffer,et al.  Assessing the importance of riparian zones conservation for leaf decomposition in streams , 2015 .

[17]  C. G. Moreira,et al.  Riqueza dos fungos ingoldianos e dos fungos aquáticos facultativos do Parque Municipal da Aclimação, São Paulo, SP, Brasil , 2015 .

[18]  J. Budke,et al.  Delving into the variations in tree species composition and richness across South American subtropical Atlantic and Pampean forests , 2015 .

[19]  P. O. Fiuza,et al.  First records of Ingoldian fungi from the Brazilian Amazon , 2015, Brazilian Journal of Botany.

[20]  A. Markkola,et al.  Multi-stressor impacts on fungal diversity and ecosystem functions in streams: natural vs. anthropogenic stress. , 2015, Ecology.

[21]  D. Bates,et al.  Fitting Linear Mixed-Effects Models Using lme4 , 2014, 1406.5823.

[22]  M. Graça,et al.  The effect of temperature on leaf decomposition and diversity of associated aquatic hyphomycetes depends on the substrate , 2013 .

[23]  M. Gessner,et al.  Diversity patterns of leaf-associated aquatic hyphomycetes along a broad latitudinal gradient , 2013 .

[24]  D. Weller,et al.  How novel is too novel? Stream community thresholds at exceptionally low levels of catchment urbanization. , 2011, Ecological applications : a publication of the Ecological Society of America.

[25]  D. Schlosser,et al.  Fungi in freshwaters: ecology, physiology and biochemical potential. , 2011, FEMS microbiology reviews.

[26]  R. King,et al.  A new method for detecting and interpreting biodiversity and ecological community thresholds , 2010 .

[27]  S. Findlay Stream microbial ecology , 2010, Journal of the North American Benthological Society.

[28]  K. Sridhar,et al.  Wood-inhabiting filamentous fungi in 12 high-altitude streams of the Western Ghats by damp incubation and bubble chamber incubation , 2010, Mycoscience.

[29]  F. Guérold,et al.  Elevated Aluminium Concentration in Acidified Headwater Streams Lowers Aquatic Hyphomycete Diversity and Impairs Leaf-Litter Breakdown , 2008, Microbial Ecology.

[30]  C. Rosa,et al.  Leaf Breakdown in a Tropical Stream , 2006 .

[31]  Curtis J. Richardson,et al.  Integrating Bioassessment and Ecological Risk Assessment: An Approach to Developing Numerical Water-Quality Criteria , 2003, Environmental management.

[32]  M. Rajashekhar,et al.  Effects of temperature and light on growth and sporulation of aquatic hyphomycetes , 2000, Hydrobiologia.

[33]  É. Chauvet,et al.  Temperature and Sporulation of Aquatic Hyphomycetes , 1998, Applied and Environmental Microbiology.

[34]  P. Legendre,et al.  SPECIES ASSEMBLAGES AND INDICATOR SPECIES:THE NEED FOR A FLEXIBLE ASYMMETRICAL APPROACH , 1997 .

[35]  M. Gessner,et al.  Stable successional patterns of aquatic hyphomycetes on leaves decaying in a summer cool stream , 1993 .

[36]  K. Suberkropp Effect of temperature on seasonal occurrence of aquatic hyphomycetes , 1984 .

[37]  J. Webster,et al.  Anaerobic survival of aquatic fungi , 1983 .

[38]  M. Gessner,et al.  Ergosterol as a Measure of Fungal Biomass , 2020, Methods to Study Litter Decomposition.

[39]  F. Bärlocher Sporulation by Aquatic Hyphomycetes , 2020, Methods to Study Litter Decomposition.

[40]  L. Marvanová,et al.  An Illustrated Key to the Common Temperate Species of Aquatic Hyphomycetes , 2020, Methods to Study Litter Decomposition.

[41]  C. Pascoal,et al.  Environmental drivers are more important for structuring fungal decomposer communities than the geographic distance between streams , 2017 .

[42]  M. Graça,et al.  Microbial colonisation and litter decomposition in a Cerrado stream are limited by low dissolved nutrient concentrations , 2015 .

[43]  A. O. Medeiros,et al.  Influence of Leaf Quality in Microbial Decomposition in a Headwater Stream in the Brazilian Cerrado: a 1-Year Study , 2014, Microbial Ecology.

[44]  M. Willig,et al.  Latitudinal Gradients of Biodiversity: Theory and Empirical Patterns , 2013 .

[45]  P.O. Fiuza Ingoldian fungi from the semi-arid Caatinga biome of Brazil , 2013 .

[46]  M. Graça,et al.  Diversity and activity of aquatic fungi under low oxygen conditions , 2009 .

[47]  C. Cressa,et al.  Preliminary Study of Aquatic Hyphomycetes from Venezuelan streams , 2007 .

[48]  David Porter,et al.  Fungal biodiversity in aquatic habitats , 2006, Biodiversity and Conservation.

[49]  J. Rosset,et al.  Aquatic hyphomycetes: Influence of pH, Ca2+ and HCO3− on growth in vitro , 1985 .