Proteínas trasportadoras de fósforo de la familia PHT1 y su uso potencial en la agricultura moderna

La agricultura se ha globalizado por sus modernos avances orientados a producir más y mejores alimentos bajo un modelo de protección ambiental. Esta práctica se realiza en suelos con diferentes cantidades de nutrientes disponibles y se basa en el uso de fuentes minerales externas para satisfacer la demanda del cultivo. El fósforo (P) es un macroelemento que participa en funciones vitales de las plantas como la producción de adenosín trifosfato (ATP), formación de biomembranas y reacciones de señalización, entre otras. Las plantas utilizan estrategias fisio-morfológicas ante una deficiencia de P que se manifiestan en síntomas característicos como desarrollo deficiente, elongación de raíz, maduración precoz y reducción de la productividad del cultivo como consecuencia. Para mantener la homeostasis celular, las plantas inducen la sobreproducción de proteínas de membrana con función transportadoras de fosfato en los diferentes órganos. Estas proteínas pertenecen a la familia PHT1, presentan un transporte de tipo sin porte que facilita la introducción de fosfato inorgánico (Pi) desde la rizosfera y permiten satisfacer la demanda biológica durante los procesos de señalización y energía. Estructuralmente estas proteínas son altamente conservadas en plantas (monocotiledóneas y dicotiledóneas) y se caracterizan por poseer 12 dominios transmembranales, un dominio conservado 2A0109 y tamaño aproximado de 520 aa. El objetivo de la presente revisión es situar en perspectiva el conocimiento actual de las proteínas transportadoras de fosfato PHT1, tomando de base los avances en modelos biológicos para mejorar los procesos productivos y las técnicas de manejo nutricional en los cultivos.

[1]  Xingming Lian,et al.  OsPT4 Contributes to Arsenate Uptake and Transport in Rice , 2017, Front. Plant Sci..

[2]  Qin Chen,et al.  Identification and characterization of phosphate transporter genes in potato. , 2017, Journal of biotechnology.

[3]  Xin-ping Chen,et al.  Genome-wide Identification, Characterization, and Expression Analysis of PHT1 Phosphate Transporters in Wheat , 2017, Front. Plant Sci..

[4]  Arthur T. O. Melo,et al.  Exploring genomic databases for in silico discovery of Pht1 genes in high syntenic close related grass species with focus in sugarcane (Saccharum spp.) , 2016 .

[5]  Mingjun Li,et al.  Genomic Identification and Expression Analysis of the Phosphate Transporter Gene Family in Poplar , 2016, Front. Plant Sci..

[6]  Wei Wang,et al.  Systematic Identification, Evolution and Expression Analysis of the Zea mays PHT1 Gene Family Reveals Several New Members Involved in Root Colonization by Arbuscular Mycorrhizal Fungi , 2016, International journal of molecular sciences.

[7]  J. Gai,et al.  Overexpression of the rice phosphate transporter gene OsPT6 enhances tolerance to low phosphorus stress in vegetable soybean , 2014 .

[8]  S. Baldwin,et al.  Phosphate Concentration and Arbuscular Mycorrhizal Colonisation Influence the Growth, Yield and Expression of Twelve PHT1 Family Phosphate Transporters in Foxtail Millet (Setaria italica) , 2014, PloS one.

[9]  Shubin Sun,et al.  Genome-wide investigation and expression analysis suggest diverse roles and genetic redundancy of Pht1 family genes in response to Pi deficiency in tomato , 2014, BMC Plant Biology.

[10]  J. Zhao,et al.  Functional Characterization of 14 Pht1 Family Genes in Yeast and Their Expressions in Response to Nutrient Starvation in Soybean , 2012, PloS one.

[11]  Peng Wang,et al.  Differential regulation of Pht1 phosphate transporters from trifoliate orange (Poncirus trifoliata L. Raf) seedlings , 2012 .

[12]  Wenfeng Li,et al.  Complementary Proteome and Transcriptome Profiling in Phosphate-deficient Arabidopsis Roots Reveals Multiple Levels of Gene Regulation* , 2012, Molecular & Cellular Proteomics.

[13]  M. Sakuta,et al.  Effect of phosphate deficiency on the content and biosynthesis of anthocyanins and the expression of related genes in suspension-cultured grape (Vitis sp.) cells. , 2012, Plant physiology and biochemistry : PPB.

[14]  R. Rodríguez‐Sotres,et al.  Changes in expression of soluble inorganic pyrophosphatases of Phaseolus vulgaris under phosphate starvation. , 2012, Plant science : an international journal of experimental plant biology.

[15]  B. G. de los Reyes,et al.  Transcriptome profiling characterizes phosphate deficiency effects on carbohydrate metabolism in rice leaves. , 2012, Journal of plant physiology.

[16]  J. Gai,et al.  Molecular Cloning, Characterization and Expression Analysis of Two Members of the Pht1 Family of Phosphate Transporters in Glycine max , 2011, PloS one.

[17]  M. J. Harrison,et al.  Closely Related Members of the Medicago truncatula PHT1 Phosphate Transporter Gene Family Encode Phosphate Transporters with Distinct Biochemical Activities* , 2008, Journal of Biological Chemistry.

[18]  Z. Li,et al.  Comparative proteome analyses of phosphorus responses in maize (Zea mays L.) roots of wild-type and a low-P-tolerant mutant reveal root characteristics associated with phosphorus efficiency. , 2008, The Plant journal : for cell and molecular biology.

[19]  T. Nielsen,et al.  Increased expression of the MYB-related transcription factor, PHR1, leads to enhanced phosphate uptake in Arabidopsis thaliana. , 2007, Plant, cell & environment.

[20]  T. Rong,et al.  The Effects of Low Phosphorus Stress on Morphological and Physiological Characteristics of Maize (Zea mays L.) Landraces , 2007 .

[21]  Hank C Wu,et al.  Phosphorus Stress in Common Bean: Root Transcript and Metabolic Responses1[W][OA] , 2007, Plant Physiology.

[22]  Shubin Sun,et al.  Conservation and divergence of both phosphate- and mycorrhiza-regulated physiological responses and expression patterns of phosphate transporters in solanaceous species. , 2007, The New phytologist.

[23]  K. Izui,et al.  Knockdown of an arbuscular mycorrhiza-inducible phosphate transporter gene of Lotus japonicus suppresses mutualistic symbiosis. , 2006, Plant & cell physiology.

[24]  M. Stitt,et al.  PHO2, MicroRNA399, and PHR1 Define a Phosphate-Signaling Pathway in Plants1[W][OA] , 2006, Plant Physiology.

[25]  N. Amrhein,et al.  Differential regulation of five Pht1 phosphate transporters from maize (Zea mays L.). , 2006, Plant biology.

[26]  Guohua Xu,et al.  The characterization of novel mycorrhiza-specific phosphate transporters from Lycopersicon esculentum and Solanum tuberosum uncovers functional redundancy in symbiotic phosphate transport in solanaceous species. , 2005, The Plant journal : for cell and molecular biology.

[27]  M. J. Harrison,et al.  Phosphate transport in Arabidopsis: Pht1;1 and Pht1;4 play a major role in phosphate acquisition from both low- and high-phosphate environments. , 2004, The Plant journal : for cell and molecular biology.

[28]  K. Raghothama,et al.  Transcriptional regulation and functional properties of Arabidopsis Pht1;4, a high affinity transporter contributing greatly to phosphate uptake in phosphate deprived plants , 2004, Plant Molecular Biology.

[29]  E. Delhaize,et al.  Characterization of promoter expression patterns derived from the Pht1 phosphate transporter genes of barley (Hordeum vulgare L.). , 2004, Journal of experimental botany.

[30]  F. W. Smith,et al.  Characterization of two phosphate transporters from barley; evidence for diverse function and kinetic properties among members of the Pht1 family , 2003, Plant Molecular Biology.

[31]  Xingliang Hou,et al.  Phosphate Starvation Triggers Distinct Alterations of Genome Expression in Arabidopsis Roots and Leaves1[w] , 2003, Plant Physiology.

[32]  M. Osaki,et al.  Cloning and characterization of four phosphate transporter cDNAs in tobacco , 2002 .

[33]  Y. Poirier,et al.  Phosphate Transport and Homeostasis in Arabidopsis , 2002, The arabidopsis book.

[34]  U. Paszkowski,et al.  Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[35]  F. W. Smith,et al.  Expression analysis suggests novel roles for members of the Pht1 family of phosphate transporters in Arabidopsis. , 2002, The Plant journal : for cell and molecular biology.

[36]  V. Rubio,et al.  A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae. , 2001, Genes & development.

[37]  I. Ciereszko,et al.  Sucrose metabolism in leaves and roots of bean (Phaseolus vulgaris L.) during phosphate deficiency , 2000 .

[38]  K. Raghothama,et al.  Transcriptional regulation of plant phosphate transporters. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[39]  L. Willmitzer,et al.  Two cDNAs from potato are able to complement a phosphate uptake-deficient yeast mutant: identification of phosphate transporters from higher plants. , 1997, The Plant cell.

[40]  S. Abel,et al.  Induction of an Extracellular Ribonuclease in Cultured Tomato Cells upon Phosphate Starvation. , 1990, Plant physiology.

[41]  G. Moorhead,et al.  Phosphate Starvation Inducible ;Bypasses' of Adenylate and Phosphate Dependent Glycolytic Enzymes in Brassica nigra Suspension Cells. , 1989, Plant physiology.

[42]  A. Goldstein,et al.  Phosphate Starvation Inducible Metabolism in Lycopersicon esculentum: I. Excretion of Acid Phosphatase by Tomato Plants and Suspension-Cultured Cells. , 1988, Plant physiology.

[43]  A. Danon,et al.  Phosphate Starvation Inducible Metabolism in Lycopersicon esculentum: II. Characterization of the Phosphate Starvation Inducible-Excreted Acid Phosphatase. , 1988, Plant physiology.

[44]  World fertilizer trends and outlook to 2022 , 2019 .

[45]  Guo-ping Zhang,et al.  Phosphate alleviates arsenate toxicity by altering expression of phosphate transporters in the tolerant barley genotypes. , 2018, Ecotoxicology and environmental safety.

[46]  S. F. Ditusa,et al.  A member of the Phosphate transporter 1 (Pht1) family from the arsenic-hyperaccumulating fern Pteris vittata is a high-affinity arsenate transporter. , 2016, The New phytologist.

[47]  C. Lacomme Plant Pathology , 2015, Methods in Molecular Biology.

[48]  T. Zhu,et al.  Transcriptome response to phosphorus starvation in rice , 2011, Acta Physiologiae Plantarum.

[49]  M. Bucher,et al.  Symbiotic phosphate transport in arbuscular mycorrhizas. , 2005, Trends in plant science.

[50]  K. Raghothama,et al.  Tomato phosphate transporter genes are differentially regulated in plant tissues by phosphorus. , 1998, Plant physiology.

[51]  A. Rychter,et al.  Assimilate translocation in bean plants (Phaseolus vulgaris L.) during phosphate deficiency , 1996 .