ArgueTutor: An Adaptive Dialog-Based Learning System for Argumentation Skills

Techniques from Natural-Language-Processing offer the opportunities to design new dialog-based forms of human-computer interaction as well as to analyze the argumentation quality of texts. This can be leveraged to provide students with adaptive tutoring when doing a persuasive writing exercise. To test if individual tutoring for students’ argumentation will help them to write more convincing texts, we developed ArgueTutor, a conversational agent that tutors students with adaptive argumentation feedback in their learning journey. We compared ArgueTutor with 55 students to a traditional writing tool. We found students using ArgueTutor wrote more convincing texts with a better quality of argumentation compared to the ones using the alternative approach. The measured level of enjoyment and ease of use provides promising results to use our tool in traditional learning settings. Our results indicate that dialog-based learning applications combined with NLP text feedback have a beneficial use to foster better writing skills of students.

[1]  F. Fischer,et al.  A framework to analyze argumentative knowledge construction in computer-supported collaborative learning , 2006, Comput. Educ..

[2]  Leslie Smith Education for thinking , 2006 .

[3]  Heinz Ulrich Hoppe,et al.  Computer supported moderation of e-discussions: the ARGUNAUT approach , 2007, CSCL.

[4]  Joonhwan Lee,et al.  Comparing Data from Chatbot and Web Surveys: Effects of Platform and Conversational Style on Survey Response Quality , 2019, CHI.

[5]  Jeffrey Pennington,et al.  GloVe: Global Vectors for Word Representation , 2014, EMNLP.

[6]  Thiemo Wambsganss,et al.  Designing a Conversational Agent as a Formative Course Evaluation Tool , 2020, Wirtschaftsinformatik.

[7]  Thiemo Wambsganss,et al.  Towards Designing an Adaptive Argumentation Learning Tool , 2019, ICIS.

[8]  Richard C. Atkinson,et al.  Human Memory: A Proposed System and its Control Processes , 1968, Psychology of Learning and Motivation.

[9]  Sharad Goel,et al.  MathBot: A Personalized Conversational Agent for Learning Math , 2020 .

[10]  F. Fischer,et al.  Toward a Script Theory of Guidance in Computer-Supported Collaborative Learning , 2013, Educational psychologist.

[11]  Niels Pinkwart,et al.  Computer-Supported Collaborative Learning DOI 10.1007/s11412-009-9080-x Computer-supported argumentation: A review of the state of the art , 2009 .

[12]  Gordon B. Davis,et al.  User Acceptance of Information Technology: Toward a Unified View , 2003, MIS Q..

[13]  Ming-Wei Chang,et al.  BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding , 2019, NAACL.

[14]  Vincent Aleven,et al.  Evaluating an Intelligent Tutoring System for Making Legal Arguments with Hypotheticals , 2009, Int. J. Artif. Intell. Educ..

[15]  E. Michael Nussbaum,et al.  Putting the pieces together: Online argumentation vee diagrams enhance thinking during discussions , 2007, Int. J. Comput. Support. Collab. Learn..

[16]  P. Black,et al.  Developing the theory of formative assessment , 2009 .

[17]  Marie-Francine Moens,et al.  Language Resources for Studying Argument , 2008, LREC.

[18]  Chenn-Jung Huang,et al.  A group intelligence-based asynchronous argumentation learning-assistance platform , 2016, Interact. Learn. Environ..

[19]  S. Ashford,et al.  Feedback-Seeking in Individual Adaptation: A Resource Perspective , 1986 .

[20]  Timothy Koschmann,et al.  Paradigm Shift s and Instructional Technology , 1996 .

[21]  M. Chi,et al.  The ICAP Framework: Linking Cognitive Engagement to Active Learning Outcomes , 2014 .

[22]  J. Osborne,et al.  The development and validation of a learning progression for argumentation in science , 2016 .

[23]  Chris Reed,et al.  Argument Mining: A Survey , 2020, Computational Linguistics.

[24]  Beata Beigman Klebanov,et al.  Applying Argumentation Schemes for Essay Scoring , 2014, ArgMining@ACL.

[25]  Viswanath Venkatesh,et al.  Technology Acceptance Model 3 and a Research Agenda on Interventions , 2008, Decis. Sci..

[26]  Severin Landolt,et al.  A Taxonomy for Deep Learning in Natural Language Processing , 2021, HICSS.

[27]  Thiemo Wambsganss,et al.  Towards a Taxonomy of Text Mining Features , 2019, ECIS.

[28]  Brijesh Singh,et al.  The Lean Startup:How Today's Entrepreneurs Use Continuous Innovation to Create Radically Successful Businesses , 2016 .

[29]  Douglas Walton,et al.  Fundamentals Of Argumentation Theory , 1996 .

[30]  Iryna Gurevych,et al.  Parsing Argumentation Structures in Persuasive Essays , 2016, CL.

[31]  L. S. Vygotskiĭ,et al.  Mind in society : the development of higher psychological processes , 1978 .

[32]  Mike Cohn,et al.  User Stories Applied: For Agile Software Development , 2004 .

[33]  D. Jonassen,et al.  Arguing to learn and learning to argue: design justifications and guidelines , 2010 .

[34]  Matthias Söllner,et al.  Insights into Using IT-Based Peer Feedback to Practice the Students Providing Feedback Skill , 2019, HICSS.

[35]  Iryna Gurevych,et al.  Identifying Argumentative Discourse Structures in Persuasive Essays , 2014, EMNLP.

[36]  Sabine Payr The virtual university's faculty: An overview of educational agents , 2003, Appl. Artif. Intell..

[37]  Iryna Gurevych,et al.  On the Role of Discourse Markers for Discriminating Claims and Premises in Argumentative Discourse , 2015, EMNLP.

[38]  Iryna Gurevych,et al.  Recognizing Insufficiently Supported Arguments in Argumentative Essays , 2017, EACL.

[39]  Karsten Stegmann,et al.  Collaborative argumentation and cognitive elaboration in a computer-supported collaborative learning environment , 2012 .

[40]  Raquel Mochales Palau,et al.  Creating an argumentation corpus: do theories apply to real arguments?: a case study on the legal argumentation of the ECHR , 2009, ICAIL.

[41]  Matthew K. O. Lee,et al.  Acceptance of Internet-based learning medium: the role of extrinsic and intrinsic motivation , 2005, Inf. Manag..

[42]  Nick Pawlowski,et al.  Rasa: Open Source Language Understanding and Dialogue Management , 2017, ArXiv.

[43]  Karin Baier,et al.  The Uses Of Argument , 2016 .

[44]  Reid Jc,et al.  Computer-assisted instruction. , 1993, Missouri medicine.

[45]  Iryna Gurevych,et al.  Exploiting Debate Portals for Semi-Supervised Argumentation Mining in User-Generated Web Discourse , 2015, EMNLP.

[46]  Larry Ambrose,et al.  The power of feedback. , 2002, Healthcare executive.

[47]  Heikki Topi USING COMPETENCIES FOR SPECIFYING OUTCOME EXPECTATIONS FOR DEGREE PROGRAMS IN COMPUTING: LESSONS LEARNED FROM OTHER DISCIPLINES , 2018 .

[48]  Ning Wang,et al.  Future of jobs , 2012 .

[49]  Sebastian Hobert,et al.  Say Hello to 'Coding Tutor'! Design and Evaluation of a Chatbot-based Learning System Supporting Students to Learn to Program , 2019, ICIS.

[50]  Thiemo Wambsganss,et al.  Unlocking Transfer Learning in Argumentation Mining: A Domain-Independent Modelling Approach , 2020, Wirtschaftsinformatik.

[51]  Mirella Lapata,et al.  Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies , 2015 .

[52]  Serena Villata,et al.  Towards a Benchmark of Natural Language Arguments , 2014, NMR 2014.

[53]  Matthias Hagen,et al.  TARGER: Neural Argument Mining at Your Fingertips , 2019, ACL.

[54]  Paolo Torroni,et al.  MARGOT: A web server for argumentation mining , 2016, Expert Syst. Appl..

[55]  D. Kuhn Thinking as Argument , 1992 .

[56]  Benno Stein,et al.  A Review Corpus for Argumentation Analysis , 2014, CICLing.

[57]  Thiemo Wambsganss,et al.  A Conversational Agent to Improve Response Quality in Course Evaluations , 2020, CHI Extended Abstracts.

[58]  Sebastian Hobert,et al.  Sara, the Lecturer: Improving Learning in Online Education with a Scaffolding-Based Conversational Agent , 2020, CHI.

[59]  Stephen E. Toulmin,et al.  The Uses of Argument, Updated Edition , 2008 .

[60]  Siegfried Handschuh,et al.  A Corpus for Argumentative Writing Support in German , 2020, COLING.

[61]  Björn Niehaves,et al.  Standing on the Shoulders of Giants: Challenges and Recommendations of Literature Search in Information Systems Research , 2015, Commun. Assoc. Inf. Syst..

[62]  Siegfried Handschuh,et al.  AL: An Adaptive Learning Support System for Argumentation Skills , 2020, CHI.

[63]  Thiemo Wambsganss,et al.  Unleashing the Potential of Conversational Agents for Course Evaluations: Empirical Insights from a Comparison with Web Surveys , 2020, ECIS.

[64]  C. O. Houle : Marks of Readable Style: A Study in Adult Education , 1945 .

[65]  Elena Karahanna,et al.  Time Flies When You're Having Fun: Cognitive Absorption and Beliefs About Information Technology Usage , 2000, MIS Q..

[66]  H. Cooper Organizing knowledge syntheses: A taxonomy of literature reviews , 1988 .

[67]  Heinrich Roth,et al.  Pädagogische Psychologie des Lehrens und Lernens , 1957 .

[68]  D. Kuhn Science as argument : Implications for teaching and learning scientific thinking , 1993 .

[69]  N. Groeben,et al.  Entwicklung und erste Validierung einer Skala zur Erfassung der passiven argumentativ-rhetorischen Kompetenz , 1999 .

[70]  Jochen Gläser,et al.  Experteninterviews und qualitative Inhaltsanalyse als Instrumente rekonstruierender Untersuchungen. , 2010 .

[71]  Janyce Wiebe,et al.  MPQA 3.0: An Entity/Event-Level Sentiment Corpus , 2015, NAACL.

[72]  Nicholas Diana Leveraging Educational Technology to Improve the Quality of Civil Discourse , 2018, AIED.

[73]  Thiemo Wambsganss,et al.  Design and Evaluation of an Adaptive Empathy Learning Tool , 2021, HICSS.

[74]  Raphael Meyer von Wolff,et al.  Say Hello to Your New Automated Tutor - A Structured Literature Review on Pedagogical Conversational Agents , 2019, Wirtschaftsinformatik.