Synthetic green fluorescent protein chromophore analogues with a positive charge at the phenyl-like group

[1]  W. Lo,et al.  Twisting-based spectroscopic measure of solvent polarity: the P(T) scale. , 2013, The Journal of organic chemistry.

[2]  W. Lo,et al.  Synthesis, photophysical properties, and application of o- and p-amino green fluorescence protein synthetic chromophores. , 2013, The Journal of organic chemistry.

[3]  G. Huang,et al.  Site-selective hydrogen-bonding-induced fluorescence quenching of highly solvatofluorochromic GFP-like chromophores. , 2012, Organic letters.

[4]  P. Chou,et al.  Excited-state intramolecular proton transfer molecules bearing o-hydroxy analogues of green fluorescent protein chromophore. , 2011, The Journal of organic chemistry.

[5]  Keli Han,et al.  Hydrogen bonding and transfer in the excited state , 2010 .

[6]  S. Meech Excited State Reactions in Fluorescent Proteins , 2009 .

[7]  K. Solntsev,et al.  Isomerization in fluorescent protein chromophores involves addition/elimination. , 2008, Journal of the American Chemical Society.

[8]  G. Huang,et al.  Photoisomerization of the green fluorescence protein chromophore and the meta- and para-amino analogues. , 2008, Chemical communications.

[9]  K. Burgess,et al.  Syntheses of highly fluorescent GFP-chromophore analogues. , 2008, Journal of the American Chemical Society.

[10]  Yuichiro Hori,et al.  [Crystal structure of the Aequorea victoria green fluorescent protein]. , 2007, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme.

[11]  Jacques Haiech,et al.  Fluorescent derivatives of the GFP chromophore give a new insight into the GFP fluorescence process. , 2003, Biophysical journal.

[12]  J. Siegel,et al.  Imaging the environment of green fluorescent protein. , 2002, Biophysical journal.

[13]  M. Zimmer Green Fluorescent Protein (GFP): Applications, Structure, and Related Photophysical Behavior , 2002 .

[14]  M. Zimmer,et al.  Photoisomerization of green fluorescent protein and the dimensions of the chromophore cavity , 2001 .

[15]  S J Remington,et al.  Structural basis for dual excitation and photoisomerization of the Aequorea victoria green fluorescent protein. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[16]  Roger Y. Tsien,et al.  Crystal Structure of the Aequorea victoria Green Fluorescent Protein , 1996, Science.

[17]  S. Boxer,et al.  Ultra-fast excited state dynamics in green fluorescent protein: multiple states and proton transfer. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[18]  R Y Tsien,et al.  Wavelength mutations and posttranslational autoxidation of green fluorescent protein. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[19]  L. Arnaut,et al.  Excited-state proton transfer reactions II. Intramolecular reactions , 1993 .

[20]  Corwin Hansch,et al.  A survey of Hammett substituent constants and resonance and field parameters , 1991 .

[21]  J. Eastman,et al.  QUANTITATIVE SPECTROFLUORIMETRY‐THE FLUORESCENCE QUANTUM YIELD OF QUININE SULFATE , 1967 .

[22]  K. Solntsev,et al.  Excited-state proton transfer: from constrained systems to "super" photoacids to superfast proton transfer. , 2002, Accounts of chemical research.

[23]  D. Shukla,et al.  UTILITY OF ACID-BASE BEHAVIOR OF EXCITED STATES OF ORGANIC MOLECULES , 1993 .

[24]  A. R. Williams,et al.  Relative fluorescence quantum yields using a computer-controlled luminescence spectrometer , 1983 .

[25]  Shreedhar Gadge,et al.  THE MOLECULAR STRUCTURE OF GREEN FLUORESCENT PROTEIN , 2022 .