Geometry of N=2 strings

We study various aspects of N = 2 critical strings. The most important aspect of these theories is that they provide a consistent quantum theory of self-dual gravity in four dimensions. We discuss the geometrical aspects of the vacua and their relation to twistor space, W∞, harmonic superspace and the superstring world-sheet. We find many indications that suggest that many of the results valid for physics in two dimensions have analogs in the effective four-dimensional theory of N = 2 strings.

[1]  Daniel Z. Freedman,et al.  Geometrical structure and ultraviolet finiteness in the supersymmetric σ-model , 1981 .

[2]  A. Polyakov Quantum Geometry of Bosonic Strings , 1981 .

[3]  H. Ooguri,et al.  SELF-DUALITY AND N=2 STRING MAGIC , 1990 .

[4]  F. Wilczek,et al.  Self-dual models with theta terms , 1989 .

[5]  C. Vafa,et al.  Interactions on Orbifolds , 1987 .

[6]  J. Plebański,et al.  An infinite hierarchy of conservation laws and nonlinear superposition principles for self‐dual Einstein spaces , 1985 .

[7]  H. Verlinde,et al.  ON MODULI SPACES OF CONFORMAL FIELD THEORIES WITH C > =1 , 1988 .

[8]  P. Kronheimer The construction of ALE spaces as hyper-Kähler quotients , 1989 .

[9]  Q. Park Self-dual gravity as a large-N limit of the 2D non-linear sigma model , 1990 .

[10]  F. John The ultrahyperbolic differential equation with four independent variables , 1938 .

[11]  S. Ferrara,et al.  Duality and supersymmetry breaking in string theory , 1990 .

[12]  A. D’Adda,et al.  Space dimensions from supersymmetry for the N=2 spinning string: A four-dimensional model , 1987 .

[13]  Conformal Invariance and Asymptotic Freedom in Quantum Gravity , 1978 .

[14]  S. Wadia,et al.  THE ROLE OF QUANTIZED 2-DIM. GRAVITY IN STRING THEORY , 1990 .

[15]  L. Mason,et al.  Nonlinear Schrödinger and korteweg-de Vries are reductions of self-dual Yang-Mills , 1989 .

[16]  Witten Space-time and topological orbifolds. , 1988, Physical review letters.

[17]  J. Cohn N = 2 super-Riemann surfaces , 1987 .

[18]  L. Brink,et al.  Dual String with U(1) Color Symmetry , 1976 .

[19]  E. Sokatchev,et al.  Harmonic supergraphs: Green functions , 1985 .

[20]  A. Bilal A remark on the N→∞ limit of WN-algebras , 1989 .

[21]  A. Hanson,et al.  SELF-DUAL SOLUTIONS TO EUCLIDEAN GRAVITY , 1979 .

[22]  I. Bakas The Large n Limit of Extended Conformal Symmetries , 1989 .

[23]  T. Eguchi,et al.  N = 2 superconformal models as topological field theories , 1990 .

[24]  L. Dixon,et al.  Moduli dependence of string loop corrections to gauge coupling constants , 1991 .

[25]  J. Plebański Some solutions of complex Einstein equations , 1975 .

[26]  A. Belavin,et al.  Algebraic Geometry and the Geometry of Quantum Strings , 1986 .

[27]  J. Morgan,et al.  Algebraic surfaces and 4-manifolds: Some conjectures and speculations , 1988 .

[28]  L. Ibáñez,et al.  Supersymmetry breaking from duality invariant gaugino condensation , 1990 .

[29]  L. Romans,et al.  W ∞ and the Racah-Wigner algebra , 1990 .

[30]  S. Donaldson Polynomial invariants for smooth four-manifolds , 1990 .

[31]  Q. Park Extended Conformal Symmetries in Real Heavens , 1990 .

[32]  E. Sokatchev,et al.  Harmonic supergraphs: Feynman rules and examples , 1985 .

[33]  S. Mathur,et al.  The N = 2 fermionic string: Path integral, spin structures and supermoduli on the torus , 1988 .

[34]  L. Romans,et al.  The complete structure of W , 1990 .

[35]  M. Grisaru,et al.  Four-Loop β-Function for the N = 1 And N = 2 Supersymmetric Non-Linear Sigma Model In Two Dimensions , 1986 .

[36]  D. Freedman,et al.  The background field method and the ultraviolet structure of the supersymmetric nonlinear σ-model , 1981 .

[37]  Edward Witten,et al.  (2+1)-Dimensional Gravity as an Exactly Soluble System , 1988 .

[38]  E. Sokatchev,et al.  $N=2$ Supergravity in Superspace: Different Versions and Matter Couplings , 1987 .

[39]  R. S. Ward Integrable and solvable systems, and relations among them , 1985, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[40]  L. Brink,et al.  Supersymmetric Strings and Color Confinement , 1976 .

[41]  L. Romans,et al.  A new higher-spin algebra and the lone-star product , 1990 .

[42]  Edward Witten,et al.  Topological quantum field theory , 1988 .

[43]  P. Ginsparg,et al.  Finiteness of Ricci flat supersymmetric non-linear σ-models , 1985 .

[44]  M. Green World sheets for world sheets , 1987 .