The Dyck and the Preiss separation uniformly

Abstract We are concerned with two separation theorems about analytic sets by Dyck and Preiss, the former involves the positively-defined subsets of the Cantor space and the latter the Borel-convex subsets of finite dimensional Banach spaces. We show by introducing the corresponding separation trees that both of these results admit a constructive proof. This enables us to give the uniform version of these separation theorems, and to derive as corollaries the results, which are analogous to the fundamental fact “ HYP is effectively bi-analytic” provided by the Suslin–Kleene Theorem.