Noiseless Privacy: Definition, Guarantees, and Applications
暂无分享,去创建一个
In this paper, we define noiseless privacy, as a nonstochastic rival to differential privacy, requiring that the outputs of a mechanism (i.e., function composition of a privacy-preserving mapping and a query) attain only a few values while varying the data of an individual (the logarithm of the number of the distinct values is bounded by the privacy budget). Therefore, the output of the mechanism is not fully informative of the data of the individuals in the dataset. We prove several guarantees for noiselessly-private mechanisms. The information content of the output about the data of an individual, even if an adversary knows all the other entries of the private dataset, is bounded by the privacy budget. The zero-error capacity of memory-less channels using noiselessly private mechanisms for transmission is upper bounded by the privacy budget. The performance of a non-stochastic hypothesis-testing adversary is bounded again by the privacy budget. Assuming that an adversary has access to a stochastic prior on the dataset, we prove that the estimation error of the adversary for individual entries of the dataset is lower bounded by a decreasing function of the privacy budget. In this case, we also show that the maximal leakage is bounded by the privacy budget. In addition to privacy guarantees, we prove that noiselessly-private mechanisms admit composition theorem and post-processing does not weaken their privacy guarantees. We prove that quantization or binning can ensure noiseless privacy if the number of quantization levels is appropriately selected based on the sensitivity of the query and the privacy budget. Finally, we illustrate the privacy merits of noiseless privacy using multiple datasets in energy, transport, and finance.