The Root Extraction Problem for Generic Braids

We show that, generically, finding the $k$-th root of a braid is very fast. More precisely, we provide an algorithm which, given a braid $x$ on $n$ strands and canonical length $l$, and an integer $k>1$, computes a $k$-th root of $x$, if it exists, or guarantees that such a root does not exist. The generic-case complexity of this algorithm is $O(l(l+n)n^3\log n)$. The non-generic cases are treated using a previously known algorithm by Sang-Jin Lee.

[1]  Volker Gebhardt A New Approach to the Conjugacy Problem in Garside Groups , 2003 .

[2]  Ruth Charney,et al.  Artin groups of finite type are biautomatic , 1992 .

[3]  Juan Gonzalez-Meneses The nth root of a braid is unique up to conjugacy , 2003 .

[4]  Hugh R. Morton,et al.  ALGORITHMS FOR POSITIVE BRAIDS , 1994 .

[5]  D. Goldfeld,et al.  An algebraic method for public-key cryptography , 1999 .

[6]  Volker Gebhardt,et al.  Conjugacy in Garside groups I: cyclings, powers and rigidity , 2006, math/0605230.

[7]  David B. A. Epstein,et al.  Word processing in groups , 1992 .

[8]  Juan González-Meneses,et al.  The cyclic sliding operation in Garside groups , 2008, 0808.1430.

[9]  Jung Hee Cheon,et al.  New Public-Key Cryptosystem Using Braid Groups , 2000, CRYPTO.

[10]  B. Wiest,et al.  On the genericity of pseudo-Anosov braids II: conjugations to rigid braids , 2013, 1309.6137.

[11]  E. Artin The theory of braids. , 1950, American scientist.

[12]  Herve Sibert,et al.  EXTRACTION OF ROOTS IN GARSIDE GROUPS , 2002 .

[13]  W. Chow On the Algebraical Braid Group , 1948 .

[14]  Volker Gebhardt,et al.  Conjugacy in Garside groups II: structure of the ultra summit set , 2006 .

[15]  Patrick Dehornoy,et al.  Foundations of Garside Theory , 2013, 1309.0796.

[16]  Patrick Dehornoy Braid-based cryptography , 2004 .

[17]  Garside groups are strongly translation discrete , 2004, math/0411470.

[18]  J. González-Meneses,et al.  On the centralizer of generic braids , 2018, Journal of Group Theory.

[19]  Ki Hyoung Ko,et al.  The Infimum, Supremum, and Geodesic Length of a Braid Conjugacy Class , 2000 .

[20]  Juan González-Meneses,et al.  Solving the conjugacy problem in Garside groups by cyclic sliding , 2008, J. Symb. Comput..