Practical aspects of structural and dynamic DNA nanotechnology

DNA nanostructures are a set of materials with well-defined physical, chemical, and biological properties that can be used on their own or incorporated with other materials for many applications. Herein, the practical aspects of utilizing DNA nanostructures (structural or dynamic) as materials are comprehensively covered. This article first summarizes properties of DNA molecules and practical considerations and then discusses the fundamental design principles of structural DNA nanostructures. Finally, various aspects of dynamic DNA nanostructure-based actuation and computation are included.

[1]  L. Valdevit,et al.  Nanolattices: An Emerging Class of Mechanical Metamaterials , 2017, Advanced materials.

[2]  Georg Seelig,et al.  A spatially localized architecture for fast and modular DNA computing. , 2017, Nature nanotechnology.

[3]  Carlos E Castro,et al.  Dynamic DNA Origami Device for Measuring Compressive Depletion Forces. , 2017, ACS nano.

[4]  Lulu Qian,et al.  Programmable disorder in random DNA tilings. , 2017, Nature nanotechnology.

[5]  Chengde Mao,et al.  Retrosynthetic Analysis-Guided Breaking Tile Symmetry for the Assembly of Complex DNA Nanostructures. , 2016, Journal of the American Chemical Society.

[6]  Mark Bathe,et al.  Programming Self-Assembly of DNA Origami Honeycomb Two-Dimensional Lattices and Plasmonic Metamaterials. , 2016, Journal of the American Chemical Society.

[7]  Georg Seelig,et al.  An Engineered Kinetic Amplification Mechanism for Single Nucleotide Variant Discrimination by DNA Hybridization Probes. , 2016, Journal of the American Chemical Society.

[8]  Do-Nyun Kim,et al.  Structural Basis for Elastic Mechanical Properties of the DNA Double Helix , 2016, PloS one.

[9]  Irving R. Epstein,et al.  Reaction-diffusion processes at the nano- and microscales. , 2016, Nature nanotechnology.

[10]  Hendrik Dietz,et al.  Nanoscale rotary apparatus formed from tight-fitting 3D DNA components , 2016, Science Advances.

[11]  Jing Pan,et al.  Recent progress on DNA based walkers. , 2015, Current opinion in biotechnology.

[12]  Andrew Phillips,et al.  Probabilistic Analysis of Localized DNA Hybridization Circuits. , 2015, ACS synthetic biology.

[13]  Pekka Orponen,et al.  DNA rendering of polyhedral meshes at the nanoscale , 2015, Nature.

[14]  H. Dietz,et al.  Dynamic DNA devices and assemblies formed by shape-complementary, non–base pairing 3D components , 2015, Science.

[15]  Hai-Jun Su,et al.  Mechanical design of DNA nanostructures. , 2015, Nanoscale.

[16]  Hai-Jun Su,et al.  Direct design of an energy landscape with bistable DNA origami mechanisms. , 2015, Nano letters.

[17]  Yannick Rondelez,et al.  A Viewpoint on : Synthesis of Programmable Reaction-Diffusion Fronts Using DNA Catalyzers , 2015 .

[18]  Hai-Jun Su,et al.  Programmable motion of DNA origami mechanisms , 2015, Proceedings of the National Academy of Sciences.

[19]  Luvena L. Ong,et al.  DNA Brick Crystals with Prescribed Depth , 2014, Nature chemistry.

[20]  T. LaBean,et al.  Toward larger DNA origami. , 2014, Nano letters.

[21]  H. Su,et al.  DNA origami compliant nanostructures with tunable mechanical properties. , 2014, ACS nano.

[22]  C. Hall,et al.  Properties of DNA , 2014 .

[23]  Jing Pan,et al.  A synthetic DNA motor that transports nanoparticles along carbon nanotubes. , 2014, Nature nanotechnology.

[24]  Luca Cardelli,et al.  Programmable chemical controllers made from DNA. , 2013, Nature nanotechnology.

[25]  Zack B. Simpson,et al.  Pattern Transformation with DNA Circuits , 2013, Nature chemistry.

[26]  Joseph M. Schaeffer,et al.  On the biophysics and kinetics of toehold-mediated DNA strand displacement , 2013, Nucleic acids research.

[27]  Hao Yan,et al.  Complex Archimedean tiling self-assembled from DNA nanostructures. , 2013, Journal of the American Chemical Society.

[28]  Luvena L. Ong,et al.  Three-Dimensional Structures Self-Assembled from DNA Bricks , 2012, Science.

[29]  P. Yin,et al.  Complex shapes self-assembled from single-stranded DNA tiles , 2012, Nature.

[30]  Weihong Tan,et al.  An autonomous and controllable light-driven DNA walking device. , 2012, Angewandte Chemie.

[31]  Jonathan Bath,et al.  A DNA-based molecular motor that can navigate a network of tracks. , 2012, Nature nanotechnology.

[32]  Shawn M. Douglas,et al.  A Logic-Gated Nanorobot for Targeted Transport of Molecular Payloads , 2012, Science.

[33]  K. Gothelf,et al.  Multilayer DNA origami packed on hexagonal and hybrid lattices. , 2012, Journal of the American Chemical Society.

[34]  Jong Bum Lee,et al.  Engineering DNA-based functional materials. , 2011, Chemical Society reviews.

[35]  Jehoshua Bruck,et al.  Neural network computation with DNA strand displacement cascades , 2011, Nature.

[36]  Sandhya P Koushika,et al.  An autonomous DNA nanomachine maps spatiotemporal pH changes in a multicellular living organism. , 2011, Nature communications.

[37]  Lulu Qian,et al.  Supporting Online Material Materials and Methods Figs. S1 to S6 Tables S1 to S4 References and Notes Scaling up Digital Circuit Computation with Dna Strand Displacement Cascades , 2022 .

[38]  Mark Bathe,et al.  A primer to scaffolded DNA origami , 2011, Nature Methods.

[39]  G. Seelig,et al.  Dynamic DNA nanotechnology using strand-displacement reactions. , 2011, Nature chemistry.

[40]  David R. Liu,et al.  Autonomous Multistep Organic Synthesis in a Single Isothermal Solution Mediated by a DNA Walker , 2010, Nature nanotechnology.

[41]  D. Ingber,et al.  Self-assembly of 3D prestressed tensegrity structures from DNA , 2010, Nature nanotechnology.

[42]  Shawn M. Douglas,et al.  Multilayer DNA origami packed on a square lattice. , 2009, Journal of the American Chemical Society.

[43]  Pamela E. Constantinou,et al.  From Molecular to Macroscopic via the Rational Design of a Self-Assembled 3D DNA Crystal , 2009, Nature.

[44]  Adam H. Marblestone,et al.  Rapid prototyping of 3D DNA-origami shapes with caDNAno , 2009, Nucleic acids research.

[45]  Shawn M. Douglas,et al.  Self-assembly of DNA into nanoscale three-dimensional shapes , 2009, Nature.

[46]  Ruojie Sha,et al.  A Bipedal DNA Brownian Motor with Coordinated Legs , 2009, Science.

[47]  Bryan Wei,et al.  UNIQUIMER 3D, a software system for structural DNA nanotechnology design, analysis and evaluation , 2009, Nucleic acids research.

[48]  Hao Yan,et al.  Tiamat: A Three-Dimensional Editing Tool for Complex DNA Structures , 2009, DNA.

[49]  Mingdong Dong,et al.  DNA origami design of dolphin-shaped structures with flexible tails. , 2008, ACS nano.

[50]  Xingguo Liang,et al.  Synthesis of azobenzene-tethered DNA for reversible photo-regulation of DNA functions: hybridization and transcription , 2007, Nature Protocols.

[51]  P. Rothemund Folding DNA to create nanoscale shapes and patterns , 2006, Nature.

[52]  F. Simmel,et al.  Switching the conformation of a DNA molecule with a chemical oscillator. , 2005, Nano letters.

[53]  Chengde Mao,et al.  Self-assembly of hexagonal DNA two-dimensional (2D) arrays. , 2005, Journal of the American Chemical Society.

[54]  P. Yin,et al.  A DNAzyme that walks processively and autonomously along a one-dimensional track. , 2005, Angewandte Chemie.

[55]  A. Turberfield,et al.  A free-running DNA motor powered by a nicking enzyme. , 2005, Angewandte Chemie.

[56]  J. Reif,et al.  A unidirectional DNA walker that moves autonomously along a track. , 2004, Angewandte Chemie.

[57]  E. Shapiro,et al.  An autonomous molecular computer for logical control of gene expression , 2004, Nature.

[58]  Darko Stefanovic,et al.  A deoxyribozyme-based molecular automaton , 2003, Nature Biotechnology.

[59]  R. P. Bajpai,et al.  DNA electronics , 2003, EMBO reports.

[60]  A. Turberfield,et al.  DNA fuel for free-running nanomachines. , 2003, Physical review letters.

[61]  A. Turberfield,et al.  A DNA-fuelled molecular machine made of DNA , 2022 .

[62]  S. Smith,et al.  Single-molecule studies of DNA mechanics. , 2000, Current opinion in structural biology.

[63]  H. Güntherodt,et al.  Dynamic force spectroscopy of single DNA molecules. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[64]  H. Asanuma,et al.  Photoregulation of the Formation and Dissociation of a DNA Duplex by Using the cis-trans Isomerization of Azobenzene. , 1999, Angewandte Chemie.

[65]  N. Seeman,et al.  A nanomechanical device based on the B–Z transition of DNA , 1999, Nature.

[66]  Michelle D. Wang,et al.  Stretching DNA with optical tweezers. , 1997, Biophysical journal.

[67]  L M Adleman,et al.  Molecular computation of solutions to combinatorial problems. , 1994, Science.

[68]  N. Seeman,et al.  DNA double-crossover molecules. , 1993, Biochemistry.

[69]  J. Szostak,et al.  In vitro selection of RNA molecules that bind specific ligands , 1990, Nature.

[70]  N C Seeman,et al.  Design of immobile nucleic acid junctions. , 1983, Biophysical journal.