Modification of current transmitted from apical dendrite to soma by blockade of voltage- and Ca2+-dependent conductances in rat neocortical pyramidal neurons.

The axial current transmitted to the soma during the long-lasting iontophoresis of glutamate at a distal site on the apical dendrite was measured by somatic voltage clamp of rat neocortical pyramidal neurons. Evidence for voltage- and Ca2+-gated channels in the apical dendrite was sought by examining the modification of this transmitted current resulting from the alteration of membrane potential and the application of channel-blocking agents. After N-methyl-D-aspartate receptor blockade, iontophoresis of glutamate on the soma evoked a current whose amplitude decreased linearly with depolarization to an extrapolated reversal potential near 0 mV. Under the same conditions, glutamate iontophoresis on the apical dendrite 241-537 microm from the soma resulted in a transmitted axial current that increased with depolarization over the same range of membrane potential (about -90 to -40 mV). Current transmitted from dendrite to soma was thus amplified during depolarization from resting potential (about -70 mV) and attenuated during hyperpolarization. After Ca2+ influx was blocked to eliminate Ca2+-dependent K+ currents, application of 10 mM tetraethylammonium chloride (TEA) altered the amplitude and voltage dependence of the transmitted current in a manner consistent with the reduction of dendritic voltage-gated K+ current. We conclude that dendritic, TEA-sensitive, voltage-gated K+ channels can be activated by tonic dendritic depolarization. The most prominent effects of blocking Ca2+ influx resembled those elicited by TEA application, suggesting that these effects were caused predominantly by blockade of a dendritic Ca2+-dependent K+ current. When cells were impaled with microelectrodes containing ethylene glycol-bis(beta-amino-ethyl ether)-N,N',N'-tetraacetic acid to prevent a rise in intracellular Ca2+ concentration, blockade of Ca2+ influx altered the tonic transmitted current in different manner consistent with the blockade of an inward dendritic current carried by high-threshold-activated Ca2+ channels. We conclude that the primary effect of Ca2+ influx during tonic dendritic depolarization is the activation of a dendritic Ca2+-dependent K+ current. The hyperpolarizing attenuation of transmitted current was unaffected by blocking all known voltage-gated inward currents except the hyperpolarization-activated cation current (Ih). Extracellular Cs+ (3 mM) reversibly abolished both the hyperpolarizing attenuation of transmitted current and Ih measured at the soma. We conclude that activation of Ih by hyperpolarization of the proximal apical dendrite would cause less axial current to arrive at the soma from a distal site than in a passive dendrite. Several functional implications of dendritic K+ and Ih channels are discussed.

[1]  N. Spruston,et al.  Voltage- and space-clamp errors associated with the measurement of electrotonically remote synaptic events. , 1993, Journal of neurophysiology.

[2]  P. C. Schwindt,et al.  High- and low-threshold calcium currents in neurons acutely isolated from rat sensorimotor cortex , 1990, Neuroscience Letters.

[3]  D. Surmeier,et al.  Voltage-gated potassium currents in acutely dissociated rat cortical neurons. , 1993, Journal of neurophysiology.

[4]  H. Markram,et al.  Calcium transients in dendrites of neocortical neurons evoked by single subthreshold excitatory postsynaptic potentials via low-voltage-activated calcium channels. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[5]  D. McCormick,et al.  Noradrenergic and serotonergic modulation of a hyperpolarization‐activated cation current in thalamic relay neurones. , 1990, The Journal of physiology.

[6]  Idan Segev,et al.  Space-Clamp Problems When Voltage Clamping Branched Neurons With Intracellular Microelectrodes , 1985 .

[7]  R. Anwyl,et al.  Modulation of vertebrate neuronal calcium channels by transmitters , 1991, Brain Research Reviews.

[8]  R. Nicoll,et al.  The coupling of neurotransmitter receptors to ion channels in the brain. , 1988, Science.

[9]  P. Schwindt,et al.  Two transient potassium currents in layer V pyramidal neurones from cat sensorimotor cortex. , 1991, The Journal of physiology.

[10]  Angus M. Brown,et al.  Voltage dependence and activation kinetics of pharmacologically defined components of the high-threshold calcium current in rat neocortical neurons. , 1993, Journal of neurophysiology.

[11]  M. Mayer,et al.  Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones , 1984, Nature.

[12]  P. Schwindt,et al.  Properties of persistent sodium conductance and calcium conductance of layer V neurons from cat sensorimotor cortex in vitro. , 1985, Journal of neurophysiology.

[13]  P. Schwindt,et al.  Anomalous rectification in neurons from cat sensorimotor cortex in vitro. , 1987, Journal of neurophysiology.

[14]  C. Koch,et al.  Amplification and linearization of distal synaptic input to cortical pyramidal cells. , 1994, Journal of neurophysiology.

[15]  A. Friedman,et al.  Intracellular Calcium and Control of Burst Generation in Neurons of Guinea‐Pig Neocortex in Vitro , 1989, The European journal of neuroscience.

[16]  J. Hablitz,et al.  Excitation of hippocampal pyramidal cells by glutamate in the guinea‐pig and rat. , 1982, The Journal of physiology.

[17]  P. Schwindt,et al.  Amplification of synaptic current by persistent sodium conductance in apical dendrite of neocortical neurons. , 1995, Journal of neurophysiology.

[18]  A. Friedman,et al.  Stepwise repolarization from Ca2+ plateaus in neocortical pyramidal cells: evidence for nonhomogeneous distribution of HVA Ca2+ channels in dendrites , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[19]  Rafael Yuste,et al.  Ca2+ accumulations in dendrites of neocortical pyramidal neurons: An apical band and evidence for two functional compartments , 1994, Neuron.

[20]  P. Schwindt,et al.  Different voltage dependence of transient and persistent Na+ currents is compatible with modal-gating hypothesis for sodium channels. , 1994, Journal of neurophysiology.

[21]  H. Markram,et al.  Dendritic calcium transients evoked by single back‐propagating action potentials in rat neocortical pyramidal neurons. , 1995, The Journal of physiology.

[22]  D. Johnston,et al.  Subthreshold synaptic activation of voltage-gated Ca2+ channels mediates a localized Ca2+ influx into the dendrites of hippocampal pyramidal neurons. , 1995, Journal of neurophysiology.

[23]  M. Mayer,et al.  A voltage‐clamp analysis of inward (anomalous) rectification in mouse spinal sensory ganglion neurones. , 1983, The Journal of physiology.

[24]  P. Schwindt,et al.  Properties and ionic mechanisms of a metabotropic glutamate receptor-mediated slow afterdepolarization in neocortical neurons. , 1994, Journal of neurophysiology.

[25]  J. Jack,et al.  Electric current flow in excitable cells , 1975 .

[26]  P. Schwindt,et al.  Local and propagated dendritic action potentials evoked by glutamate iontophoresis on rat neocortical pyramidal neurons. , 1997, Journal of neurophysiology.

[27]  P. Schwindt,et al.  Slow conductances in neurons from cat sensorimotor cortex in vitro and their role in slow excitability changes. , 1988, Journal of neurophysiology.

[28]  P Schwindt,et al.  Equivalence of amplified current flowing from dendrite to soma measured by alteration of repetitive firing and by voltage clamp in layer 5 pyramidal neurons. , 1996, Journal of neurophysiology.

[29]  J. Lambert,et al.  The excitability of CA1 pyramidal cell dendrites is modulated by a local Ca2+-dependent K+-conductance , 1995, Brain Research.

[30]  D. Johnston,et al.  Synaptic activation of voltage-gated channels in the dendrites of hippocampal pyramidal neurons. , 1995, Science.

[31]  B. Sakmann,et al.  Active propagation of somatic action potentials into neocortical pyramidal cell dendrites , 1994, Nature.

[32]  B Sakmann,et al.  Spatial profile of dendritic calcium transients evoked by action potentials in rat neocortical pyramidal neurones. , 1995, The Journal of physiology.