The single-machine total tardiness scheduling problem: Review and extensions

We review the latest theoretical developments for the single-machine total tardiness scheduling problem and propose extensions to some of them. We also review (and in some cases extend) exact algorithms, fully polynomial time approximation schemes, heuristic algorithms, special cases and generalizations of the problem. Our findings indicate that the problem continues to attract significant research interest from both a theoretical and a practical perspective. Even though the problem is ordinary NP-hard, the current state-of-the-art algorithms are capable of solving problems with up to 500 jobs.

[1]  John J. Kanet New Precedence Theorems for One-Machine Weighted Tardiness , 2007, Math. Oper. Res..

[2]  Dvir Shabtay,et al.  Two due date assignment problems in scheduling a single machine , 2006, Oper. Res. Lett..

[3]  Alexander A. Lazarev Solution of the NP-hard total tardiness minimization problem in scheduling theory , 2007 .

[4]  Chris N. Potts,et al.  A decomposition algorithm for the single machine total tardiness problem , 1982, Oper. Res. Lett..

[5]  Dvir Shabtay,et al.  Optimal Due Date Assignment and Resource Allocation to Minimize the Weighted Number of Tardy Jobs on a Single Machine , 2007, Manuf. Serv. Oper. Manag..

[6]  James R. Evans,et al.  A greedy heuristic for the mean tardiness sequencing problem , 1994, Comput. Oper. Res..

[7]  T. C. E. Cheng,et al.  Single machine scheduling to minimize total weighted tardiness , 2005, Eur. J. Oper. Res..

[8]  Bahram Alidaee,et al.  Insights into two solution procedures for the single machine tardiness problem , 2002, J. Oper. Res. Soc..

[9]  Hamilton Emmons,et al.  One-Machine Sequencing to Minimize Certain Functions of Job Tardiness , 1969, Oper. Res..

[10]  Tapan Sen,et al.  Static scheduling research to minimize weighted and unweighted tardiness: A state-of-the-art survey , 2003 .

[11]  Mohamed Ben-Daya,et al.  A simulated annealing approach for the one-machine mean tardiness scheduling problem , 1996 .

[12]  Xiangtong Qi,et al.  Single machine scheduling with assignable due dates , 2002, Discret. Appl. Math..

[13]  Wlodzimierz Szwarc,et al.  Decomposition of the single machine total tardiness problem , 1996, Oper. Res. Lett..

[14]  Chris N. Potts,et al.  Single Machine Tardiness Sequencing Heuristics , 1991 .

[15]  Qing Lu,et al.  On decomposition of the total tardiness problem , 1995, Oper. Res. Lett..

[16]  Jan Karel Lenstra,et al.  Complexity of machine scheduling problems , 1975 .

[17]  R M Russell,et al.  Evaluation of greedy, myopic and less-greedy heuristics for the single machine, total tardiness problem , 1997 .

[18]  E. L. Lawler,et al.  A fully polynomial approximation scheme for the total tardiness problem , 1982, Oper. Res. Lett..

[19]  Wlodzimierz Szwarc Some remarks on the decomposition properties of the single machine total tardiness problem , 2007, Eur. J. Oper. Res..

[20]  Ihsan Sabuncuoglu,et al.  New insights on the single machine total tardiness problem , 1997 .

[21]  M. Y. Kovalyov Improving the complexities of approximation algorithms for optimization problems , 1995, Oper. Res. Lett..

[22]  Christos Koulamas,et al.  A heuristic for the single machine tardiness problem , 1993 .

[23]  Yasuhiro Hirakawa A quick optimal algorithm for sequencing on one machine to minimize total tardiness , 1999 .

[24]  Richard F. Hartl,et al.  An ant colony optimization approach for the single machine total tardiness problem , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[25]  Hans-Jürgen Appelrath,et al.  A general model for scheduling problems , 1991 .

[26]  Gerhard J. Woeginger,et al.  When Does a Dynamic Programming Formulation Guarantee the Existence of a Fully Polynomial Time Approximation Scheme (FPTAS)? , 2000, INFORMS J. Comput..

[27]  Ihsan Sabuncuoglu,et al.  A neural network model for scheduling problems , 1996 .

[28]  Wenci Yu,et al.  The two-machine flow shop problem with delays and the one-machine total tardiness problem , 1996 .

[29]  Wlodzimierz Szwarc,et al.  Solution of the single machine total tardiness problem , 1999 .

[30]  Christos Koulamas,et al.  The Total Tardiness Problem: Review and Extensions , 1994, Oper. Res..

[31]  C. Chu A branch-and-bound algorithm to minimize total tardiness with different release dates , 1992 .

[32]  A. Kan Machine Scheduling Problems: Classification, Complexity and Computations , 1976 .

[33]  Christos Koulamas Polynomially solvable total tardiness problems: Review and extensions , 1997 .

[34]  Meral Azizoglu,et al.  An efficient algorithm for the single machine tardiness problem , 1994 .

[35]  Kenneth R. Baker,et al.  Job shop scheduling with modified due dates , 1983 .

[36]  Joseph Y.-T. Leung,et al.  Minimizing Total Tardiness on One Machine is NP-Hard , 1990, Math. Oper. Res..

[37]  Ramasamy Panneerselvam Simple heuristic to minimize total tardiness in a single machine scheduling problem , 2006 .

[38]  R. Tadei,et al.  Finding the Pareto-optima for the total and maximum tardiness single machine problem , 2002, Discret. Appl. Math..

[39]  Chris N. Potts,et al.  An Iterated Dynasearch Algorithm for the Single-Machine Total Weighted Tardiness Scheduling Problem , 2002, INFORMS J. Comput..

[40]  Dirk Biskup,et al.  A note on An efficient algorithm for the single-machine tardiness problem , 2000 .

[41]  Robert McNaughton,et al.  Scheduling with Deadlines and Loss Functions , 1959 .

[42]  Wlodzimierz Szwarc Decomposition in single-machine scheduling , 1998, Ann. Oper. Res..

[43]  S. S. Panwalkar,et al.  Common Due Date Assignment to Minimize Total Penalty for the One Machine Scheduling Problem , 1982, Oper. Res..

[44]  Alexander A. Lazarev,et al.  SPECIAL CASE OF THE SINGLE MACHINE TOTAL TARDINESS PROBLEM IS NP-HARD , 2006 .

[45]  E. Lawler A “Pseudopolynomial” Algorithm for Sequencing Jobs to Minimize Total Tardiness , 1977 .

[46]  Roberto Tadei,et al.  A new decomposition approach for the single machine total tardiness scheduling problem , 1998, J. Oper. Res. Soc..

[47]  Chris N. Potts,et al.  A survey of algorithms for the single machine total weighted tardiness scheduling problem , 1990, Discret. Appl. Math..

[48]  T. C. Edwin Cheng,et al.  On the single machine total tardiness problem , 2005, Eur. J. Oper. Res..

[49]  J. D. Irwin,et al.  An Improved Method for Scheduling Independent Tasks , 1971 .

[50]  Bahram Alidaee,et al.  A note on the equivalence of two heuristics to minimize total tardiness , 1997 .

[51]  Nicholas G. Hall Scheduling Problems With Generalized Due Dates , 1986 .

[52]  井尻 雄士 Creative and innovative approaches to the science of management , 1993 .

[53]  Christos Koulamas A faster fully polynomial approximation scheme for the single-machine total tardiness problem , 2009, Eur. J. Oper. Res..

[54]  James C. Bean,et al.  Genetic Algorithms and Random Keys for Sequencing and Optimization , 1994, INFORMS J. Comput..

[55]  Wenci Yu Augmentations of Consistent Partial orders for the one-machine Total Tardiness Problem , 1996, Discret. Appl. Math..

[56]  Randolph M. Russell,et al.  Evaluation of leading heuristics for the single machine tardiness problem , 1997 .

[57]  Vangelis Th. Paschos,et al.  Lower Bounds on the Approximation Ratios of Leading Heuristics for the Single-Machine Total Tardiness Problem , 2004, J. Sched..

[58]  E.L. Lawler,et al.  Optimization and Approximation in Deterministic Sequencing and Scheduling: a Survey , 1977 .

[59]  Christos Koulamas,et al.  Single machine scheduling with release times, deadlines and tardiness objectives , 2001, Eur. J. Oper. Res..

[60]  Wlodzimierz Szwarc,et al.  Algorithmic paradoxes of the single‐machine total tardiness problem , 2001 .

[61]  T.C.E. Cheng A note on the equivalence of the Wilkerson-Irwin and modified due-date rules for the mean tardiness sequencing problem , 1992 .

[62]  R. M. Russell,et al.  A Heuristic Algorithm for Sequencing on One Machine to Minimize Total Tardiness , 1992 .

[63]  Alexander A. Lazarev,et al.  A hybrid algorithm for the single-machine total tardiness problem , 2009, Comput. Oper. Res..

[64]  Ihsan Sabuncuoglu,et al.  An Efficient Algorithm for the Single Machine Total Tardiness Problem , 2001 .

[65]  Jwm Will Bertrand,et al.  A dynamic priority rule for scheduling against due-dates , 1982 .

[66]  Donald C Carroll,et al.  Heuristic sequencing of single and multiple component jobs. , 1965 .

[67]  Guochun Tang,et al.  Worst-case analysis of local search heuristics for the one-machine total tardiness problem , 1990 .