Aqueous Alteration on Mars

Aqueous alteration is the change in composition of a rock, produced in response to interactions with H2O-bearing ices, liquids, and vapors by chemical weathering. A variety of mineralogical and geochemical indicators for aqueous alteration on Mars have been identified by a combination of surface and orbital robotic missions, telescopic observations, characterization of Martian meteorites, and laboratory and terrestrial analog studies. Mineralogical indicators for aqueous alteration include goethite (lander), jarosite (lander), kieserite (orbiter), gypsum (orbiter) and other Fe-, Mg-, and Ca-sulfates (landers), halides (meteorites, lander), phyllosilicates (orbiter, meteorites), hematite and nanophase iron oxides (telescopic, orbiter, lander), and Fe-, Mg-, and Ca-carbonates (meteorites). Geochemical indicators (landers only) for aqueous alteration include Mg-, Ca-, and Fe-sulfates, halides, and secondary aluminosilicates such as smectite. Based upon these indicators, several styles of aqueous alteration have been suggested on Mars. Acid-sulfate weathering (e.g., formation of jarosite, gypsum, hematite, and goethite), may occur during (1) the oxidative weathering of ultramafic igneous rocks containing sulfides, (2) sulfuric acid weathering of basaltic materials, and (3) acid fog (i.e., vapors rich in H2SO4) weathering of basaltic or basaltic-derived materials. Near-neutral or alkaline alteration occurs when solutions with pH near or above 7 move through basaltic materials and form phases such as phyllosilicates and carbonates. Very low water:rock ratios appear to have been prominent at most of the sites visited by landed missions because there is very little alteration (leaching) of the original basaltic composition (i.e., the alteration is isochemical or in a closed hydrologic system). Most of the aqueous alteration appears to have occurred early in the history of the planet (3 to 4.5 billion years ago); however, minor aqueous alteration may be occurring at the surface even today (e.g., in thin films of water or by acid fog).

[1]  R. Fitzpatrick,et al.  Acid sulfate soils , 2009 .

[2]  D. Ming,et al.  Evidence for Montmorillonite or its Compositional Equivalent in Columbia Hills, Mars , 2007 .

[3]  Jeffrey R. Johnson,et al.  The rocks of Gusev Crater as viewed by the Mini‐TES instrument , 2006 .

[4]  Raymond E. Arvidson,et al.  Mossbauer mineralogy of rock, soil, and dust at Meridiani Planum, Mars: Opportunity's journey across sulfate-rich outcrop, basaltic sand and dust, and hematite lag deposits , 2006 .

[5]  E. Vicenzi,et al.  Raman Imaging Analysis of Jarosite in MIL 03346 , 2006 .

[6]  R. E. Arvidson,et al.  Supporting Online Material , 2003 .

[7]  Jeffrey R. Johnson,et al.  Evidence for Halite at Meridiani Planum , 2006 .

[8]  William H. Farrand,et al.  Rocks of the Columbia Hills , 2006 .

[9]  Steven W. Squyres,et al.  Alpha Particle X‐Ray Spectrometer (APXS): Results from Gusev crater and calibration report , 2006 .

[10]  Raymond E. Arvidson,et al.  In-Situ and Experimental Evidence for Acidic Weathering of Rocks and Soils on Mars , 2006 .

[11]  Planetary science: Clays in the history of Mars , 2005, Nature.

[12]  Richard V. Morris,et al.  Laboratory Simulated Acid-Sulfate Weathering of Basaltic Materials: Implications for Formation of Sulfates at Meridiani Planum and Gusev Crater, Mars , 2005 .

[13]  Richard V. Morris,et al.  The Río Tinto Basin, Spain: Mineralogy, sedimentary geobiology, and implications for interpretation of outcrop rocks at Meridiani Planum, Mars , 2005 .

[14]  William H. Farrand,et al.  Chemistry and mineralogy of outcrops at Meridiani Planum , 2005 .

[15]  Amitabha Ghosh,et al.  An integrated view of the chemistry and mineralogy of martian soils , 2005, Nature.

[16]  D. Mckay,et al.  Antarctic Dry Valleys and indigenous weathering in Mars meteorites: Implications for water and life on Mars , 2005 .

[17]  Jean-Pierre Bibring,et al.  Sulfates in the North Polar Region of Mars Detected by OMEGA/Mars Express , 2005, Science.

[18]  Jean-Pierre Bibring,et al.  Sulfates in Martian Layered Terrains: The OMEGA/Mars Express View , 2005, Science.

[19]  D. L. O'Brien,et al.  Heterogeneous phase reactions of Martian volatiles with putative regolith minerals , 1979, Journal of Molecular Evolution.

[20]  Everett L. Shock,et al.  Formation of jarosite‐bearing deposits through aqueous oxidation of pyrite at Meridiani Planum, Mars , 2004 .

[21]  J. Rimstidt,et al.  Jarosite as an indicator of water-limited chemical weathering on Mars , 2004, Nature.

[22]  William V. Boynton,et al.  Global distribution of near-surface hydrogen on Mars , 2004 .

[23]  R E Arvidson,et al.  Basaltic rocks analyzed by the Spirit Rover in Gusev Crater. , 2004, Science.

[24]  H. V. Lauer,et al.  Evidence for exclusively inorganic formation of magnetite in Martian meteorite ALH84001 , 2004 .

[25]  Scott M. McLennan,et al.  Acid-sulfate weathering of synthetic Martian basalt: The acid fog model revisited , 2004 .

[26]  T. Hare,et al.  Paleolakes and impact basins in southern Arabia Terra, including Meridiani Planum: Implications for the formation of hematite deposits on Mars , 2003 .

[27]  D. Vaniman,et al.  Stability of hydrous minerals on the martian surface , 2003 .

[28]  S. Ruff Spectral evidence for zeolite in the dust on Mars , 2002 .

[29]  Richard V. Morris,et al.  Global mapping of Martian hematite mineral deposits: Remnants of water‐driven processes on early Mars , 2001 .

[30]  M. Mellon,et al.  Mars Global Surveyor Thermal Emission Spectrometer experiment: Investigation description and surface science results , 2001 .

[31]  H. Newsom,et al.  Location and sampling of aqueous and hydrothermal deposits in martian impact craters. , 2001, Astrobiology.

[32]  J. Carey,et al.  Thermal behavior of natural zeolites , 2001 .

[33]  John F. Mustard,et al.  Near-Infrared Spectral Variations of Martian Surface Materials from ISM Imaging Spectrometer Data , 2000 .

[34]  R. Clark,et al.  Identification of a basaltic component on the Martian surface from Thermal Emission Spectrometer data , 2000 .

[35]  John Bridges,et al.  Evaporite mineral assemblages in the nakhlite (martian) meteorites , 2000 .

[36]  Richard V. Morris,et al.  Mineralogy, composition, and alteration of Mars Pathfinder rocks and soils: Evidence from multispectral, elemental, and magnetic data on terrestrial analogue, SNC meteorite, and Pathfinder samples , 2000 .

[37]  D. Nordstrom,et al.  Iron and Aluminum Hydroxysulfates from Acid Sulfate Waters , 2000 .

[38]  H. Newsom,et al.  Mixed Hydrothermal Fluids and the Origin of the Martian Soil: A New Quantitative Model , 1999 .

[39]  Chemical Composition of the Martian Surface as Derived from Pathfinder, Viking, and Martian Meteorite Data , 1999 .

[40]  A. Banin,et al.  Acidic volatiles and the Mars soil , 1997 .

[41]  W. Calvin Variation of the 3-μm absorption feature on Mars: observations over eastern Valles Marineris by the mariner 6 infrared spectrometer , 1997 .

[42]  G. B. Dalrymple,et al.  THE GEOLOGY AND PETROLOGY OF MAUNA KEA VOLCANO, HAWAII : A STUDY OF POSTSHIELD VOLCANISM , 1997 .

[43]  J. Bishop,et al.  Schwertmannite on Mars? Spectroscopic analyses of schwertmannite, its relationship to other ferric minerals, and its possible presence in the surface material on Mars , 1996 .

[44]  R. Morris,et al.  Hematite, pyroxene, and phyllosilicates on Mars: Implications from oxidized impact melt rocks from Manicouagan Crater, Quebec, Canada , 1995 .

[45]  B. Clark Geochemical components in Martian soil , 1993 .

[46]  David Crisp,et al.  Groundbased Imaging Spectroscopy of Mars in the Near-Infrared: Preliminary Results , 1993 .

[47]  R. E. Wilson,et al.  Recent chemical weathering of basalts , 1992 .

[48]  R. Arvidson,et al.  Physical and chemical weathering , 1992 .

[49]  R. Burns,et al.  Iron‐sulfur mineralogy of Mars: Magmatic evolution and chemical weathering products , 1990 .

[50]  J. Bell,et al.  Observational evidence of crystalline iron oxides on Mars , 1990 .

[51]  R. Morris,et al.  Evidence for pigmentary hematite on Mars based on optical, magnetic, and Mossbauer studies of superparamagnetic (nanocrystalline) hematite , 1989 .

[52]  G. M. Young,et al.  Formation and Diagenesis of Weathering Profiles , 1989, The Journal of Geology.

[53]  Michael E. Zolensky,et al.  Calcium carbonate and sulfate of possible extraterrestrial origin in the EETA 79001 meteorite , 1988 .

[54]  R. Burns Gossans on Mars , 1988 .

[55]  A. K. Baird,et al.  Did komatiitic lavas erode channels on Mars? , 1984, Nature.

[56]  G. M. Young,et al.  Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations , 1984 .

[57]  G. M. Young,et al.  Early Proterozoic climates and plate motions inferred from major element chemistry of lutites , 1982, Nature.

[58]  D. Fanning,et al.  Alfisols and Ultisols with Acid Sulfate Weathering Features in Texas , 1982 .

[59]  R. Clark,et al.  Mars residual north polar cap: Earth‐based spectroscopic confirmation of water ice as a major constituent and evidence for hydrated minerals , 1982 .

[60]  R. Singer Spectral evidence for the mineralogy of high‐albedo soils and dust on Mars , 1982 .

[61]  Lorraine Schnabel,et al.  Chemical composition of Martian fines , 1982 .

[62]  C. Allen,et al.  Hydrothermally altered impact melt rock and breccia: Contributions to the soil of Mars , 1982 .

[63]  P. Driessen,et al.  Physiography of coastal sediments and development of potential acidity , 1982 .

[64]  H. Newsom Hydrothermal alteration of impact melt sheets with implications for Mars , 1980 .

[65]  J. Adams,et al.  Amorphous gels as possible analogs to Martian weathering products , 1980 .

[66]  G. W. Brindley,et al.  X-Ray diffraction procedures for clay mineral identification , 1980 .

[67]  A. K. Baird,et al.  Is the Martian lithosphere sulfur rich , 1979 .

[68]  Klaus Keil,et al.  The Viking X ray fluorescence experiment - Analytical methods and early results , 1977 .

[69]  Carl Sagan,et al.  Physical properties of the particles composing the Martian dust storm of 1971–1972 , 1977 .

[70]  K. Herr,et al.  Evidence About Hydrate and Solid Water in the Martian Surface From the , 1974 .

[71]  J. A. Decker,et al.  High altitude infrared spectroscopic evidence for bound water on Mars. , 1973 .

[72]  J. Syers,et al.  Magnesium and Silicon Activities in Matrix Solutions of Montmorillonite-Containing Soils in Relation to Clay Mineral Stability , 1971 .

[73]  J. A. Kittrick Montmorillonite Equilibria and the Weathering Environment1 , 1971 .

[74]  M. Jackson CLAY TRANSFORMATIONS IN SOIL GENESIS DURING THE QUATERNARY , 1965 .