Polarizability analysis of canonical dielectric and bi-anisotropic scatterers
暂无分享,去创建一个
[1] P. Morse,et al. Methods of theoretical physics , 1955 .
[2] A. Sihvola,et al. Electrostatics of an anisotropic ellipsoid in an anisotropic environment , 1996 .
[3] W. Weiglhofer. Electromagnetic Field in the Source Region: A Review , 1999 .
[4] T. Taylor. Electric polarizability of a short right circular conducting cylinder , 1960 .
[5] R. Fox,et al. Classical Electrodynamics, 3rd ed. , 1999 .
[6] Werner S. Weiglhofer,et al. Electromagnetic depolarization dyadics and elliptic integrals , 1998 .
[7] Stanislaw Gubanski,et al. Dielectric relaxation in dielectric mixtures: Application of the finite element method and its comparison with dielectric mixture formulas , 2001 .
[8] Stoner EdmundC.,et al. XCVII. The demagnetizing factors for ellipsoids , 1945 .
[9] J. Garnett,et al. Colours in Metal Glasses and in Metallic Films. , 1904, Proceedings of the Royal Society of London.
[10] E. M. Lifshitz,et al. Electrodynamics of continuous media , 1961 .
[11] S. Shtrikman,et al. A Variational Approach to the Theory of the Effective Magnetic Permeability of Multiphase Materials , 1962 .
[12] T. Senior,et al. The dipole moments of a dielectric cube , 1977 .
[13] J. Osborn. Demagnetizing Factors of the General Ellipsoid , 1945 .
[14] Modelling of dielectric materials with cubic inclusion shapes , 1999, 1999 29th European Microwave Conference.
[15] Douglas,et al. Hydrodynamic friction of arbitrarily shaped Brownian particles. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[16] ON THE CAPACITY AND RAYLEIGH SCATTERING FOR A CLASS OF NON-CONVEX BODIES , 1989 .
[17] W. R. Smythe. Static and Dynamic Electricity , 1989 .
[18] A. Shivola. Self-consistency aspects of dielectric mixing theories , 1989 .
[19] ELECTROSTATIC IMAGE THEORY FOR TWO INTERSECTING CONDUCTING SPHERES , 2003 .
[20] A. Yaghjian. Electric dyadic Green's functions in the source region , 1980 .
[22] G. Arfken. Mathematical Methods for Physicists , 1967 .
[23] Ismo V. Lindell,et al. Electromagnetic Waves in Chiral and Bi-Isotropic Media , 1994 .
[24] J. Bladel. Singular electromagnetic fields and sources , 1996 .
[25] John G. Fikioris. Electromagnetic Field inside a Current‐Carrying Region , 1965 .
[26] Ari Henrik Sihvola,et al. Effective permittivity of mixtures: numerical validation by the FDTD method , 2000, IEEE Trans. Geosci. Remote. Sens..
[27] A. Beroual,et al. Effective dielectric constant of periodic composite materials , 1996 .
[28] W. Steen. Absorption and Scattering of Light by Small Particles , 1999 .
[29] Ari Sihvola,et al. Electromagnetic Waves in Bi-Isotropic and Chiral Media , 1994 .
[30] D. Polder,et al. The effective permeability of mixtures of solids , 1946 .
[31] Femke Olyslager,et al. Closed form solutions of Maxwell s equations in the computer age , 2003 .
[32] K.F. Schoch,et al. HANDBOOK OF ELECTROMAGNETIC MATERIALS , 1996, IEEE Electrical Insulation Magazine.
[33] Ari Sihvola,et al. Six-vector formalism in electromagnetics of bi-anisotropic media , 1995 .
[34] G. Kristensson,et al. Homogenization of woven materials , 1998 .
[35] A. Sihvola,et al. Microwave backscattering by nonspherical ice particles at 5.6 GHz using second-order perturbation series , 2001 .
[36] D. A. G. Bruggeman. Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. III. Die elastischen Konstanten der quasiisotropen Mischkörper aus isotropen Substanzen , 1937 .
[37] G. Pólya,et al. Isoperimetric inequalities in mathematical physics , 1951 .
[38] D. Jeffrey,et al. Conduction through a random suspension of spheres , 1973, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[39] C. Brosseau. Generalized effective medium theory and dielectric relaxation in particle-filled polymeric resins , 2002 .
[40] E. Hobson. The Theory of Spherical and Ellipsoidal Harmonics , 1955 .
[41] T. Egami. Selected topics in solid state physics: C. W. Chen, Vol. XV, edited by E. P. Wohlfarth, published by North-Holland, Amsterdam, 1977, 571 pp. , 1979 .
[42] J. Swinburne. Electromagnetic Theory , 1894, Nature.
[43] On the capacity of a condenser , 1945 .
[44] Salvatore Torquato,et al. Random Heterogeneous Media: Microstructure and Improved Bounds on Effective Properties , 1991 .
[45] Ari Sihvola,et al. Electromagnetic mixing formulas and applications , 1999 .
[46] R. E. Kleinman,et al. Dipole moments and near field potentials , 1973 .
[47] T. Miloh,et al. Rayleigh scattering for the Kelvin-inverted ellipsoid , 1999 .
[48] Feng Wu,et al. Quasi-static effective permittivity of periodic composites containing complex shaped dielectric particles , 2001 .
[49] G. Szegö,et al. Virtual mass and polarization , 1949 .
[50] D. A. Dunnett. Classical Electrodynamics , 2020, Nature.
[51] Correlation between the geometrical characteristics and dielectric polarizability of polyhedra. , 2004 .
[52] George Dassios,et al. Low Frequency Scattering , 2000 .
[53] Ari Henrik Sihvola,et al. Analysis of a three-dimensional dielectric mixture with finite difference method , 2001, IEEE Trans. Geosci. Remote. Sens..
[54] J. Kong,et al. Theory of microwave remote sensing , 1985 .
[55] J. Van Bladel,et al. Electrostatic dipole moment of a dielectric cube , 1961 .
[56] Ari Sihvola,et al. Polarizability and Effective Permittivity of Layered and Continuously Inhomogeneous Dielectric Spheres , 1989 .
[57] A boundary integral equation method for the calculation of the effective permittivity of periodic composites , 1997 .
[59] A. Sihvola,et al. Polarizability analysis of cubical and square-shaped dielectric scatterers , 2001 .
[60] A. Sihvola,et al. Polarizabilities of platonic solids , 2004, IEEE Transactions on Antennas and Propagation.
[61] B. U. Felderhof,et al. Longitudinal and transverse polarizability of the conducting double sphere , 2000 .
[62] A. Yaghjian,et al. Electric dyadic Green's functions in the source region , 1980, Proceedings of the IEEE.
[63] George Polya,et al. Estimating Electrostatic Capacity , 1947 .
[64] Ari Henrik Sihvola,et al. How strict are theoretical bounds for dielectric properties of mixtures? , 2001, IEEE Trans. Geosci. Remote. Sens..
[65] G. Grimvall. Thermophysical properties of materials , 1986 .
[66] Polarizability of polyhedral dielectric scatterers , 2002 .
[67] D. A. G. Bruggeman. Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .
[68] E. M. Lifshitz,et al. Course in Theoretical Physics , 2013 .
[69] A. Hippel,et al. Dielectric Materials and Applications , 1995 .
[70] R. Kress,et al. Integral equation methods in scattering theory , 1983 .
[71] C. Brosseau,et al. How do shape anisotropy and spatial orientation of the constituents affect the permittivity of dielectric heterostructures , 2000 .
[72] D. McLachlan,et al. The complex permittivity of emulsions: An effective media-percolation equation , 1989 .
[73] Abderrahmane Beroual,et al. Permittivity of lossy composite materials , 1998 .
[74] Poladian. Long-wavelength absorption in composites. , 1991, Physical review. B, Condensed matter.
[75] W. R. Smythe. Charged Right Circular Cylinder , 1956 .
[76] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[77] J. Garnett,et al. Colours in Metal Glasses and in Metallic Films , 1904 .
[78] Stanislaw M. Gubanski,et al. Dielectric mixtures: electrical properties and modeling , 2001 .
[79] Effects of particle shape on the effective permittivity of composite materials with measurements for lattices of cubes , 2002 .
[80] E. Garboczi,et al. Intrinsic viscosity and the electrical polarizability of arbitrarily shaped objects. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.
[81] J.J.H. Wang,et al. Computation of fields in an arbitrary shaped heterogeneous dielectric or biological body by an iterative conjugate gradient method , 1989 .
[82] D. S. Jones. THE SCATTERING OF LONG ELECTROMAGNETIC WAVES , 1980 .