Polarizability analysis of canonical dielectric and bi-anisotropic scatterers

Solutions for simple, canonical problems are important in electromagnetics, because they can be often utilized in more complicated problems. This thesis consists of analyses of some basic canonical objects and fundamental principles of electromagnetic theory. One of the fundamental objects analyzed in this thesis is an ellipsoid, and especially a layered ellipsoid. Although it is a basic and classical object in electromagnetics, some new properties of the layered ellipsoid can still be found. Very important concept in static electromagnetics is polarizability, which simply is the connection between the incident field and the dipole moment that is induced in an object. The polarizability of a dielectric sphere and ellipsoid is well known and can be calculated with simple formulas, but for a more complicated object the evaluation of the polarizability requires more effort. This thesis presents an analysis of one particular class of objects, namely the Platonic polyhedra. The thesis also describes how inhomogeneous materials can be modelled with mixing formulas, in which the polarizability is a key parameter.

[1]  P. Morse,et al.  Methods of theoretical physics , 1955 .

[2]  A. Sihvola,et al.  Electrostatics of an anisotropic ellipsoid in an anisotropic environment , 1996 .

[3]  W. Weiglhofer Electromagnetic Field in the Source Region: A Review , 1999 .

[4]  T. Taylor Electric polarizability of a short right circular conducting cylinder , 1960 .

[5]  R. Fox,et al.  Classical Electrodynamics, 3rd ed. , 1999 .

[6]  Werner S. Weiglhofer,et al.  Electromagnetic depolarization dyadics and elliptic integrals , 1998 .

[7]  Stanislaw Gubanski,et al.  Dielectric relaxation in dielectric mixtures: Application of the finite element method and its comparison with dielectric mixture formulas , 2001 .

[8]  Stoner EdmundC.,et al.  XCVII. The demagnetizing factors for ellipsoids , 1945 .

[9]  J. Garnett,et al.  Colours in Metal Glasses and in Metallic Films. , 1904, Proceedings of the Royal Society of London.

[10]  E. M. Lifshitz,et al.  Electrodynamics of continuous media , 1961 .

[11]  S. Shtrikman,et al.  A Variational Approach to the Theory of the Effective Magnetic Permeability of Multiphase Materials , 1962 .

[12]  T. Senior,et al.  The dipole moments of a dielectric cube , 1977 .

[13]  J. Osborn Demagnetizing Factors of the General Ellipsoid , 1945 .

[14]  Modelling of dielectric materials with cubic inclusion shapes , 1999, 1999 29th European Microwave Conference.

[15]  Douglas,et al.  Hydrodynamic friction of arbitrarily shaped Brownian particles. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[16]  ON THE CAPACITY AND RAYLEIGH SCATTERING FOR A CLASS OF NON-CONVEX BODIES , 1989 .

[17]  W. R. Smythe Static and Dynamic Electricity , 1989 .

[18]  A. Shivola Self-consistency aspects of dielectric mixing theories , 1989 .

[19]  ELECTROSTATIC IMAGE THEORY FOR TWO INTERSECTING CONDUCTING SPHERES , 2003 .

[20]  A. Yaghjian Electric dyadic Green's functions in the source region , 1980 .

[21]  A procedure for solving the electric field integral equation for a dielectric scatterer with a large permittivity using face-centered node points , 1991 .

[22]  G. Arfken Mathematical Methods for Physicists , 1967 .

[23]  Ismo V. Lindell,et al.  Electromagnetic Waves in Chiral and Bi-Isotropic Media , 1994 .

[24]  J. Bladel Singular electromagnetic fields and sources , 1996 .

[25]  John G. Fikioris Electromagnetic Field inside a Current‐Carrying Region , 1965 .

[26]  Ari Henrik Sihvola,et al.  Effective permittivity of mixtures: numerical validation by the FDTD method , 2000, IEEE Trans. Geosci. Remote. Sens..

[27]  A. Beroual,et al.  Effective dielectric constant of periodic composite materials , 1996 .

[28]  W. Steen Absorption and Scattering of Light by Small Particles , 1999 .

[29]  Ari Sihvola,et al.  Electromagnetic Waves in Bi-Isotropic and Chiral Media , 1994 .

[30]  D. Polder,et al.  The effective permeability of mixtures of solids , 1946 .

[31]  Femke Olyslager,et al.  Closed form solutions of Maxwell s equations in the computer age , 2003 .

[32]  K.F. Schoch,et al.  HANDBOOK OF ELECTROMAGNETIC MATERIALS , 1996, IEEE Electrical Insulation Magazine.

[33]  Ari Sihvola,et al.  Six-vector formalism in electromagnetics of bi-anisotropic media , 1995 .

[34]  G. Kristensson,et al.  Homogenization of woven materials , 1998 .

[35]  A. Sihvola,et al.  Microwave backscattering by nonspherical ice particles at 5.6 GHz using second-order perturbation series , 2001 .

[36]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. III. Die elastischen Konstanten der quasiisotropen Mischkörper aus isotropen Substanzen , 1937 .

[37]  G. Pólya,et al.  Isoperimetric inequalities in mathematical physics , 1951 .

[38]  D. Jeffrey,et al.  Conduction through a random suspension of spheres , 1973, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[39]  C. Brosseau Generalized effective medium theory and dielectric relaxation in particle-filled polymeric resins , 2002 .

[40]  E. Hobson The Theory of Spherical and Ellipsoidal Harmonics , 1955 .

[41]  T. Egami Selected topics in solid state physics: C. W. Chen, Vol. XV, edited by E. P. Wohlfarth, published by North-Holland, Amsterdam, 1977, 571 pp. , 1979 .

[42]  J. Swinburne Electromagnetic Theory , 1894, Nature.

[43]  On the capacity of a condenser , 1945 .

[44]  Salvatore Torquato,et al.  Random Heterogeneous Media: Microstructure and Improved Bounds on Effective Properties , 1991 .

[45]  Ari Sihvola,et al.  Electromagnetic mixing formulas and applications , 1999 .

[46]  R. E. Kleinman,et al.  Dipole moments and near field potentials , 1973 .

[47]  T. Miloh,et al.  Rayleigh scattering for the Kelvin-inverted ellipsoid , 1999 .

[48]  Feng Wu,et al.  Quasi-static effective permittivity of periodic composites containing complex shaped dielectric particles , 2001 .

[49]  G. Szegö,et al.  Virtual mass and polarization , 1949 .

[50]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[51]  Correlation between the geometrical characteristics and dielectric polarizability of polyhedra. , 2004 .

[52]  George Dassios,et al.  Low Frequency Scattering , 2000 .

[53]  Ari Henrik Sihvola,et al.  Analysis of a three-dimensional dielectric mixture with finite difference method , 2001, IEEE Trans. Geosci. Remote. Sens..

[54]  J. Kong,et al.  Theory of microwave remote sensing , 1985 .

[55]  J. Van Bladel,et al.  Electrostatic dipole moment of a dielectric cube , 1961 .

[56]  Ari Sihvola,et al.  Polarizability and Effective Permittivity of Layered and Continuously Inhomogeneous Dielectric Spheres , 1989 .

[57]  A boundary integral equation method for the calculation of the effective permittivity of periodic composites , 1997 .

[59]  A. Sihvola,et al.  Polarizability analysis of cubical and square-shaped dielectric scatterers , 2001 .

[60]  A. Sihvola,et al.  Polarizabilities of platonic solids , 2004, IEEE Transactions on Antennas and Propagation.

[61]  B. U. Felderhof,et al.  Longitudinal and transverse polarizability of the conducting double sphere , 2000 .

[62]  A. Yaghjian,et al.  Electric dyadic Green's functions in the source region , 1980, Proceedings of the IEEE.

[63]  George Polya,et al.  Estimating Electrostatic Capacity , 1947 .

[64]  Ari Henrik Sihvola,et al.  How strict are theoretical bounds for dielectric properties of mixtures? , 2001, IEEE Trans. Geosci. Remote. Sens..

[65]  G. Grimvall Thermophysical properties of materials , 1986 .

[66]  Polarizability of polyhedral dielectric scatterers , 2002 .

[67]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .

[68]  E. M. Lifshitz,et al.  Course in Theoretical Physics , 2013 .

[69]  A. Hippel,et al.  Dielectric Materials and Applications , 1995 .

[70]  R. Kress,et al.  Integral equation methods in scattering theory , 1983 .

[71]  C. Brosseau,et al.  How do shape anisotropy and spatial orientation of the constituents affect the permittivity of dielectric heterostructures , 2000 .

[72]  D. McLachlan,et al.  The complex permittivity of emulsions: An effective media-percolation equation , 1989 .

[73]  Abderrahmane Beroual,et al.  Permittivity of lossy composite materials , 1998 .

[74]  Poladian Long-wavelength absorption in composites. , 1991, Physical review. B, Condensed matter.

[75]  W. R. Smythe Charged Right Circular Cylinder , 1956 .

[76]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[77]  J. Garnett,et al.  Colours in Metal Glasses and in Metallic Films , 1904 .

[78]  Stanislaw M. Gubanski,et al.  Dielectric mixtures: electrical properties and modeling , 2001 .

[79]  Effects of particle shape on the effective permittivity of composite materials with measurements for lattices of cubes , 2002 .

[80]  E. Garboczi,et al.  Intrinsic viscosity and the electrical polarizability of arbitrarily shaped objects. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[81]  J.J.H. Wang,et al.  Computation of fields in an arbitrary shaped heterogeneous dielectric or biological body by an iterative conjugate gradient method , 1989 .

[82]  D. S. Jones THE SCATTERING OF LONG ELECTROMAGNETIC WAVES , 1980 .