Semi-device-independent characterization of multipartite entanglement of states and measurements

The semi-device-independent framework allows one to draw conclusions about properties of an unknown quantum system under weak assumptions. Here we present a semi-device-independent scheme for the characterisation of multipartite entanglement based around a game played by several isolated parties whose devices are uncharacterised beyond an assumption about the dimension of their Hilbert spaces. Our scheme can certify that an $n$-partite high-dimensional quantum state features genuine multipartite entanglement. Moreover, the scheme can certify that a joint measurement on $n$ subsystems is entangled, and provides a lower bound on the number of entangled measurement operators. These tests are strongly robust to noise, and even optimal for certain classes of states and measurements, as we demonstrate with illustrative examples. Notably, our scheme allows for the certification of many entangled states admitting a local model, which therefore cannot violate any Bell inequality.

[1]  T. Vértesi,et al.  Multisetting Bell-type inequalities for detecting genuine multipartite entanglement , 2011, 1102.4320.

[2]  V. Scarani,et al.  Bell-type inequalities to detect true n-body nonseparability. , 2002, Physical review letters.

[3]  G. H. Aguilar,et al.  Detection of entanglement in asymmetric quantum networks and multipartite quantum steering , 2014, Nature Communications.

[4]  Nicolas Gisin,et al.  Measurement-device-independent entanglement witnesses for all entangled quantum states. , 2012, Physical review letters.

[5]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[6]  Yonina C. Eldar,et al.  Optimal Encoding of Classical Information in a Quantum Medium , 2007, IEEE Transactions on Information Theory.

[7]  Peter Wittek,et al.  Efficient Device-Independent Entanglement Detection for Multipartite Systems , 2016, 1612.08551.

[8]  N. Brunner,et al.  Genuinely Multipartite Entangled Quantum States with Fully Local Hidden Variable Models and Hidden Multipartite Nonlocality. , 2015, Physical review letters.

[9]  Melvyn Ho,et al.  Device-independent certification of entangled measurements. , 2011, Physical review letters.

[10]  Armin Tavakoli,et al.  Quantum Random Access Codes Using Single d-Level Systems. , 2015, Physical review letters.

[11]  M. Pawłowski,et al.  Semi-device-independent randomness certification usingn→1quantum random access codes , 2011, 1109.5259.

[12]  Remigiusz Augusiak,et al.  Local hidden–variable models for entangled quantum states , 2014, 1405.7321.

[13]  N. Gisin,et al.  A framework for the study of symmetric full-correlation Bell-like inequalities , 2012, 1201.2055.

[14]  J. H. Eberly,et al.  Genuinely multipartite concurrence of N -qubit X matrices , 2012, 1208.2706.

[15]  R. N. Schouten,et al.  Unconditional quantum teleportation between distant solid-state quantum bits , 2014, Science.

[16]  G. Tóth,et al.  Entanglement detection , 2008, 0811.2803.

[17]  Popescu,et al.  Bell's Inequalities and Density Matrices: Revealing "Hidden" Nonlocality. , 1995, Physical review letters.

[18]  M. Horodecki,et al.  General teleportation channel, singlet fraction and quasi-distillation , 1998, quant-ph/9807091.

[19]  S. Massar,et al.  Bell inequalities for arbitrarily high-dimensional systems. , 2001, Physical review letters.

[20]  Francesco Buscemi,et al.  All entangled quantum states are nonlocal. , 2011, Physical review letters.

[21]  Jean-Daniel Bancal,et al.  Measurement-device-independent quantification of entanglement for given Hilbert space dimension , 2015, 1509.08682.

[22]  Nicolas Brunner,et al.  Semi-device-independent security of one-way quantum key distribution , 2011, 1103.4105.

[23]  Nicolas Brunner,et al.  Semi-device-independent bounds on entanglement , 2010, 1012.1513.

[24]  G. Tóth,et al.  Noise robustness of the nonlocality of entangled quantum states. , 2007, Physical review letters.

[25]  M. Seevinck,et al.  Bell-type inequalities for partial separability in N-particle systems and quantum mechanical violations. , 2002, Physical review letters.

[26]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[27]  J. Siewert,et al.  Quantifying entanglement resources , 2014, 1402.6710.

[28]  Philipp Schindler,et al.  Deterministic entanglement swapping with an ion-trap quantum computer , 2008 .

[29]  Stefano Pironio,et al.  Device-independent witnesses of genuine multipartite entanglement. , 2011, Physical review letters.

[30]  Carlos Palazuelos,et al.  Superactivation of quantum nonlocality. , 2012, Physical review letters.

[31]  Ludovico Lami,et al.  Genuine-multipartite entanglement criteria based on positive maps , 2016, 1609.08126.

[32]  Jianwei Xu Multipartite Fully Entangled Fraction , 2015, 1506.04550.

[33]  A Acín,et al.  Entanglement and Nonlocality are Inequivalent for Any Number of Parties. , 2014, Physical review letters.

[34]  V. Scarani,et al.  Device-independent security of quantum cryptography against collective attacks. , 2007, Physical review letters.

[35]  Werner,et al.  Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. , 1989, Physical review. A, General physics.

[36]  Miguel Navascues,et al.  Certifying entangled measurements in known Hilbert spaces , 2011, 1101.5361.

[37]  M. T. Cunha,et al.  Quantum bounds on multiplayer linear games and device-independent witness of genuine tripartite entanglement , 2015, 1510.09210.

[38]  M. Horodecki,et al.  Local environment can enhance fidelity of quantum teleportation , 1999, quant-ph/9912098.

[39]  Tamás Vértesi,et al.  Experimental semi-device-independent certification of entangled measurements. , 2014, Physical review letters.

[40]  Nicolas Gisin,et al.  Imperfect measurement settings: Implications for quantum state tomography and entanglement witnesses , 2012, 1203.0911.

[41]  M. S. Tame,et al.  Experimental verification of multipartite entanglement in quantum networks , 2016, Nature Communications.

[42]  Stefano Pironio,et al.  Random numbers certified by Bell’s theorem , 2009, Nature.

[43]  Jean-Daniel Bancal,et al.  Device-independent entanglement quantification and related applications. , 2013, Physical review letters.

[44]  Marco T'ulio Quintino,et al.  Better local hidden variable models for two-qubit Werner states and an upper bound on the Grothendieck constant $K_G(3)$ , 2016, 1609.06114.

[45]  M D Reid,et al.  Genuine multipartite Einstein-Podolsky-Rosen steering. , 2012, Physical review letters.

[46]  T. Moroder,et al.  Taming multiparticle entanglement. , 2010, Physical review letters.

[47]  Antonio Acin,et al.  Genuine tripartite entangled states with a local hidden-variable model , 2006 .