Hecke Algebras, Difference Operators, and Quasi-Symmetric Functions

Abstract We define a new action of the symmetric group and its Hecke algebra on polynomial rings whose invariants are exactly the quasi-symmetric polynomials. We interpret this construction in terms of a Demazure character formula for the irreducible polynomial modules of a degenerate quantum group. We use the action of the generic Hecke algebras to define quasi-symmetric and noncommutative analogues of Hall–Littlewood functions. We show that these generalized functions share many combinatorial properties with the classical ones.  Nous introduisons de nouvelles actions du groupe symetrique et de son algebre de Hecke sur les polynomes, pour lesquelles les invariants sont les polynomes quasi-symetriques. Nous interpretons cette construction en termes de caracteres de Demazure d'un groupe quantique degenere. Nous utilisons l'action de l'algebre de Hecke generique pour definir des analogues quasi-symetriques et non commutatifs des fonctions de Hall–Littlewood. Nous montrons que ces fonctions generalisees ont un certain nombre de proprietes communes avec les fonctions classiques.

[1]  S. Brenner Modular representations of p groups , 1970 .

[2]  Peter Littelmann,et al.  Crystal Graphs and Young Tableaux , 1995 .

[3]  Anatol N. Kirillov,et al.  The Bethe Ansatz and the combinatorics of Young tableaux , 1988 .

[4]  Jean-Christophe Novelli,et al.  On the hypoplactic monoid , 2000, Discret. Math..

[5]  Alain Lascoux,et al.  Hecke algebras at roots of unity and crystal bases of quantum affine algebras , 1996 .

[6]  A. Lascoux,et al.  Symmetrization operators on polynomial rings , 1987 .

[7]  P. Bouwknegt,et al.  The Deformed Virasoro Algebra at Roots of Unity , 1997, q-alg/9710026.

[8]  Daniel Krob,et al.  Noncommutative Symmetric Functions V: a degenerate Version of UQ(Gln) , 1999, Int. J. Algebra Comput..

[9]  K. Johnsen On a Forgotten Note by Ernst Steinitz on the Theory of Abelian Groups , 1982 .

[10]  Daniel Krob,et al.  Noncommutative Symmetric Functions Iv: Quantum Linear Groups and Hecke Algebras at q = 0 , 1997 .

[11]  I. Cherednik A unification of Knizhnik-Zamolodchikov and Dunkl operators via affine Hecke algebras , 1991 .

[12]  I. G. MacDonald,et al.  Symmetric functions and Hall polynomials , 1979 .

[13]  D. E. Littlewood,et al.  On Certain Symmetric Functions , 1961 .

[14]  C. Yang Some Exact Results for the Many-Body Problem in one Dimension with Repulsive Delta-Function Interaction , 1967 .

[15]  G. Lusztig Green polynomials and singularities of unipotent classes , 1981 .

[16]  E. Steinitz Zur Theorie der Abel'schen Gruppen. , 1901 .

[17]  Daniel Krob,et al.  Fonctions quasi-symétriques, fonctions symétriques non commutatives et algèbres de Hecke à q = 0 , 1996 .

[18]  Roger W. Carter,et al.  Representation theory of the 0-Hecke algebra , 1986 .

[19]  A. Garsia,et al.  A graded representation model for Macdonald's polynomials. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[20]  Alain Lascoux,et al.  Ribbon tableaux, Hall–Littlewood functions, quantum affine algebras, and unipotent varieties , 1995 .

[21]  Israel M. Gelfand,et al.  Noncommutative Symmetrical Functions , 1995 .

[22]  R. Steinberg,et al.  A geometric approach to the representations of the full linear group over a Galois field , 1951 .

[23]  J. A. Green,et al.  The characters of the finite general linear groups , 1955 .

[24]  T. Mansour,et al.  Involutions avoiding the class of permutations in Sk with prefix 12 , 2007 .

[25]  A. Lascoux,et al.  Fonctions de Hall-Littlewood et polynômes de Kostka-Foulkes aux racines de l'unité , 1993 .

[26]  H. O. Foulkes A survey of some combinatorial aspects of symmetric functions , 1974 .

[27]  Kostka polynomials and energy functions in solvable lattice models , 1995, q-alg/9512027.

[28]  J. Schur,et al.  Über die Darstellung der symmetrischen und der alternierenden Gruppe durch gebrochene lineare Substitutionen. , 1911 .

[29]  Alain Lascoux,et al.  Symmetry and flag manifolds , 1983 .

[30]  Jean-Yves Thibon,et al.  Canonical bases of q-deformed Fock spaces , 1996 .

[31]  Alain Lascoux,et al.  Euler-Poincare Characteristic and Polynomial Representations of Iwahori-Hecke Algebras , 1995 .

[32]  C. Reutenauer,et al.  Duality between Quasi-Symmetrical Functions and the Solomon Descent Algebra , 1995 .

[33]  G. Lusztig Equivariant $K$-theory and representations of Hecke algebras , 1985 .

[34]  T. A. Springer,et al.  A specialization theorem for certain Weyl group representations and an application to the green polynomials of unitary groups , 1977 .

[35]  I. Gel'fand,et al.  SCHUBERT CELLS AND COHOMOLOGY OF THE SPACES G/P , 1973 .

[36]  Alain Lascoux,et al.  Green Polynomials and Hall-Littlewood Functions at Roots of Unity , 1994, Eur. J. Comb..