Capacity constrained blue-noise sampling on surfaces

We present a novel method for high-quality blue-noise sampling on mesh surfaces with prescribed cell-sizes for the underlying tessellation (capacity constraint). Unlike the previous surface sampling approach that only uses capacity constraints as a regularizer of the Centroidal Voronoi Tessellation (CVT) energy, our approach enforces an exact capacity constraint using the restricted power tessellation on surfaces. Our approach is a generalization of the previous 2D blue noise sampling technique using an interleaving optimization framework. We further extend this framework to handle multi-capacity constraints. We compare our approach with several state-of-the-art methods and demonstrate that our results are superior to previous work in terms of preserving the capacity constraints. Graphical abstractWe present a new method for blue noise sampling on mesh surfaces under capacity constraints and extend this framework to handle multi-capacity constraints.Multi-capacity constrained sampling on Dragon model.Display Omitted HighlightsA new approach for blue-noise sampling on mesh surfaces under capacity constraints.The derivation of the gradient of the new formulation on mesh surfaces.A novel extension to handle multi-capacity constraints.

[1]  Marc Antonini,et al.  Direct blue noise resampling of meshes of arbitrary topology , 2015, The Visual Computer.

[2]  Marshall W. Bern,et al.  A new Voronoi-based surface reconstruction algorithm , 1998, SIGGRAPH.

[3]  Franz Aurenhammer,et al.  Minkowski-type theorems and least-squares partitioning , 1992, SCG '92.

[4]  Dong-Ming Yan,et al.  Non-Obtuse Remeshing with Centroidal Voronoi Tessellation , 2016, IEEE Transactions on Visualization and Computer Graphics.

[5]  O. Deussen,et al.  Capacity-constrained point distributions: a variant of Lloyd's method , 2009, SIGGRAPH 2009.

[6]  Mathieu Desbrun,et al.  Blue noise through optimal transport , 2012, ACM Trans. Graph..

[7]  Cláudio T. Silva,et al.  Fast adaptive blue noise on polygonal surfaces , 2014, Graph. Model..

[8]  Ligang Liu,et al.  Variational Blue Noise Sampling , 2012, IEEE Transactions on Visualization and Computer Graphics.

[9]  Chenglei Yang,et al.  On centroidal voronoi tessellation—energy smoothness and fast computation , 2009, TOGS.

[10]  Li-Yi Wei,et al.  Parallel Poisson disk sampling with spectrum analysis on surfaces , 2010, ACM Trans. Graph..

[11]  C. Villani Optimal Transport: Old and New , 2008 .

[12]  Paolo Cignoni,et al.  Ieee Transactions on Visualization and Computer Graphics 1 Efficient and Flexible Sampling with Blue Noise Properties of Triangular Meshes , 2022 .

[13]  Dewen Hu,et al.  Graph-based image segmentation using directional nearest neighbor graph , 2012, Science China Information Sciences.

[14]  Robert Ulichney,et al.  Digital Halftoning , 1987 .

[15]  Bin Wang,et al.  A Survey of Blue-Noise Sampling and Its Applications , 2015, Journal of Computer Science and Technology.

[16]  Dong-Ming Yan,et al.  Gap processing for adaptive maximal poisson-disk sampling , 2012, TOGS.

[17]  Stefan Jeschke,et al.  Dart Throwing on Surfaces , 2009, Comput. Graph. Forum.

[18]  Greg Humphreys,et al.  A spatial data structure for fast Poisson-disk sample generation , 2006, ACM Trans. Graph..

[19]  Ares Lagae,et al.  A Comparison of Methods for Generating Poisson Disk Distributions , 2008, Comput. Graph. Forum.

[20]  Xiaohong Jia,et al.  Blue‐Noise Remeshing with Farthest Point Optimization , 2014, Comput. Graph. Forum.

[21]  Don P. Mitchell,et al.  Spectrally optimal sampling for distribution ray tracing , 1991, SIGGRAPH.

[22]  Zhenhua Li,et al.  A parallel algorithm for improving the maximal property of Poisson disk sampling , 2014, Comput. Aided Des..

[23]  Greg Humphreys,et al.  A spatial data structure for fast Poisson-disk sample generation , 2006, SIGGRAPH 2006.

[24]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[25]  Qian Sun,et al.  An Intrinsic Algorithm for Parallel Poisson Disk Sampling on Arbitrary Surfaces , 2013, IEEE Transactions on Visualization and Computer Graphics.

[26]  Ligang Liu,et al.  Blue noise sampling of surfaces , 2012, Comput. Graph..

[27]  F Aurenhammert POWER DIAGRAMS : PROPERTIES , ALGORITHMS AND , .

[28]  Raymond A Wildman,et al.  Postprocessing of Voxel-Based Topologies for Additive Manufacturing Using the Computational Geometry Algorithms Library (CGAL) , 2015 .

[29]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[30]  Robert Bridson,et al.  Ghost SPH for animating water , 2012, ACM Trans. Graph..

[31]  D. P. Bourne,et al.  Centroidal Power Diagrams, Lloyd's Algorithm, and Applications to Optimal Location Problems , 2014, SIAM J. Numer. Anal..

[32]  Dong-Ming Yan,et al.  Low-Resolution Remeshing Using the Localized Restricted Voronoi Diagram , 2014, IEEE Transactions on Visualization and Computer Graphics.

[33]  Quentin Mérigot,et al.  Discrete Optimal Transport: Complexity, Geometry and Applications , 2016, Discret. Comput. Geom..

[34]  Jian Sun,et al.  Optimal mass transport for geometric modeling based on variational principles in convex geometry , 2014, Engineering with Computers.

[35]  DeussenOliver,et al.  Capacity-constrained point distributions , 2009 .

[36]  S. Yau,et al.  Variational Principles for Minkowski Type Problems, Discrete Optimal Transport, and Discrete Monge-Ampere Equations , 2013, 1302.5472.

[37]  Franz Aurenhammer,et al.  Power Diagrams: Properties, Algorithms and Applications , 1987, SIAM J. Comput..

[38]  Yan Fu,et al.  Direct sampling on surfaces for high quality remeshing , 2009, Comput. Aided Geom. Des..

[39]  Xiaohong Jia,et al.  Efficient maximal Poisson-disk sampling and remeshing on surfaces , 2015, Comput. Graph..

[40]  Huamin Wang,et al.  Bilateral blue noise sampling , 2013, ACM Trans. Graph..

[41]  Dong-Ming Yan,et al.  Isotropic Remeshing with Fast and Exact Computation of Restricted Voronoi Diagram , 2009, Comput. Graph. Forum.

[42]  Quentin Mérigot,et al.  A Multiscale Approach to Optimal Transport , 2011, Comput. Graph. Forum.

[43]  Thomas C. Hales,et al.  The Honeycomb Conjecture , 1999, Discret. Comput. Geom..

[44]  Li-yi Wei,et al.  Differential domain analysis for non-uniform sampling , 2011, SIGGRAPH 2011.

[45]  B. Lévy A Numerical Algorithm for L2 Semi-Discrete Optimal Transport in 3D , 2014, 1409.1279.

[46]  Oliver Deussen,et al.  Farthest-point optimized point sets with maximized minimum distance , 2011, HPG '11.

[47]  Heng Wang,et al.  Approximate Poisson disk sampling on mesh , 2013, Science China Information Sciences.

[48]  Y. Brenier Polar Factorization and Monotone Rearrangement of Vector-Valued Functions , 1991 .

[49]  Johannes Wallner,et al.  Architectural geometry , 2007, Comput. Graph..

[50]  Michael Balzer,et al.  Capacity-constrained point distributions: a variant of Lloyd's method , 2009, ACM Trans. Graph..