Insights into Cyclostome Phylogenomics: Pre-2R or Post-2R

Abstract Interest in understanding the transition from prevertebrates to vertebrates at the molecular level has resulted in accumulating genomic and transcriptomic sequence data for the earliest groups of extant vertebrates, namely, hagfishes (Myxiniformes) and lampreys (Petromyzontiformes). Molecular phylogenetic studies on species phylogeny have revealed the monophyly of cyclostomes and the deep divergence between hagfishes and lampreys (more than 400 million years). In parallel, recent molecular phylogenetic studies have shed light on the complex evolution of the cyclostome genome. This consists of whole genome duplications, shared at least partly with gnathostomes (jawed vertebrates), and cyclostome lineage-specific secondary modifications of the genome, such as gene gains and losses. Therefore, the analysis of cyclostome genomes requires caution in distinguishing between orthology and paralogy in gene molecular phylogeny at the gene family scale, as well as between apomorphic and plesiomorphic genomic traits in larger-scale analyses. In this review, we propose possible ways of improving the resolvability of these evolutionary events, and discuss probable scenarios for cyclostome genome evolution, with special emphasis on the hypothesis that two-round (2R) genome duplication events occurred before the divergence between cyclostomes and gnathostomes, and therefore that a post-2R state is a genomic synapomorphy for all extant vertebrates.

[1]  M. W. Hardisty,et al.  The biology of lampreys , 1971 .

[2]  S. Kuraku,et al.  Lamprey as an evo‐devo model: Lessons from comparative embryology and molecular phylogenetics , 2002, Genesis.

[3]  M. Cohn,et al.  Hagfish and lancelet fibrillar collagens reveal that type II collagen-based cartilage evolved in stem vertebrates , 2006, Proceedings of the National Academy of Sciences.

[4]  Axel Meyer,et al.  Timing of genome duplications relative to the origin of the vertebrates: did cyclostomes diverge before or after? , 2008, Molecular biology and evolution.

[5]  M. Cohn,et al.  Lamprey type II collagen and Sox9 reveal an ancient origin of the vertebrate collagenous skeleton , 2006 .

[6]  Axel Meyer,et al.  The evolution and maintenance of Hox gene clusters in vertebrates and the teleost-specific genome duplication. , 2009, The International journal of developmental biology.

[7]  F. Delsuc,et al.  Tunicates and not cephalochordates are the closest living relatives of vertebrates , 2006, Nature.

[8]  Austin L. Hughes,et al.  Phylogenies of Developmentally Important Proteins Do Not Support the Hypothesis of Two Rounds of Genome Duplication Early in Vertebrate History , 1999, Journal of Molecular Evolution.

[9]  J. W. Pendleton,et al.  Expansion of the Hox gene family and the evolution of chordates. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[10]  A. T. Sumner Chromosomes: Organization and Function , 2003 .

[11]  J. Dopazo,et al.  The human phylome , 2007, Genome Biology.

[12]  J. Langeland,et al.  Lamprey Dlx genes and early vertebrate evolution. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[13]  J. Mallatt,et al.  Ribosomal RNA genes and deuterostome phylogeny revisited: more cyclostomes, elasmobranchs, reptiles, and a brittle star. , 2007, Molecular phylogenetics and evolution.

[14]  G. Petsko My worries are no longer behind me , 2007, Genome Biology.

[15]  Koji Tamura,et al.  Noncanonical role of Hox14 revealed by its expression patterns in lamprey and shark , 2008, Proceedings of the National Academy of Sciences.

[16]  Nobuyoshi Shimizu,et al.  Genomic analysis of Hox clusters in the sea lamprey Petromyzon marinus. , 2002, The Journal of experimental zoology.

[17]  S. Kuraku,et al.  Comprehensive survey of carapacial ridge‐specific genes in turtle implies co‐option of some regulatory genes in carapace evolution , 2005, Evolution & development.

[18]  P. Holland,et al.  Were vertebrates octoploid? , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[19]  W. R. Robertson Chromosome studies. I. Taxonomic relationships shown in the chromosomes of tettigidae and acrididae: V‐shaped chromosomes and their significance in acrididae, locustidae, and gryllidae: Chromosomes and variation , 1916 .

[20]  A. Meyer,et al.  Recent Advances in the (Molecular) Phylogeny of Vertebrates , 2003 .

[21]  K. Katoh,et al.  Monophyly of Lampreys and Hagfishes Supported by Nuclear DNA–Coded Genes , 1999, Journal of Molecular Evolution.

[22]  Morris Goodman,et al.  Darwinian evolution in the genealogy of haemoglobin , 1975, Nature.

[23]  M. Nozaki,et al.  Identification of sea lamprey GTHbeta-like cDNA and its evolutionary implications. , 2006, General and comparative endocrinology.

[24]  Vincent Laudet,et al.  Analysis of lamprey and hagfish genes reveals a complex history of gene duplications during early vertebrate evolution. , 2002, Molecular biology and evolution.

[25]  Paramvir S. Dehal,et al.  Two Rounds of Whole Genome Duplication in the Ancestral Vertebrate , 2005, PLoS biology.

[26]  A. Hughes,et al.  Pattern and timing of gene duplication in animal genomes. , 2001, Genome research.

[27]  A. Hughes,et al.  2R or not 2R: Testing hypotheses of genome duplication in early vertebrates , 2004, Journal of Structural and Functional Genomics.

[28]  Mikiko Tanaka,et al.  Identification of four Engrailed genes in the Japanese lamprey, Lethenteron japonicum , 2008, Developmental dynamics : an official publication of the American Association of Anatomists.

[29]  D. Larhammar,et al.  The human Hox-bearing chromosome regions did arise by block or chromosome (or even genome) duplications. , 2002, Genome research.

[30]  Shigehiro Kuraku,et al.  Time Scale for Cyclostome Evolution Inferred with a Phylogenetic Diagnosis of Hagfish and Lamprey cDNA Sequences , 2006, Zoological science.

[31]  Shigeru Kuratani,et al.  Heterotopic Shift of Epithelial-Mesenchymal Interactions in Vertebrate Jaw Evolution , 2002, Science.

[32]  T. Whitfield,et al.  The developing lamprey ear closely resembles the zebrafish otic vesicle: otx1 expression can account for all major patterning differences , 2006, Development.

[33]  R. Gregory The evolution of the genome , 2005 .

[34]  T. Miyata,et al.  Kinesin-related genes from diplomonad, sponge, amphioxus, and cyclostomes: divergence pattern of kinesin family and evolution of giardial membrane-bounded organella. , 2002, Molecular biology and evolution.

[35]  K. H. Wolfe Yesterday's polyploids and the mystery of diploidization , 2001, Nature Reviews Genetics.

[36]  A. Hughes,et al.  Gene duplication and the structure of eukaryotic genomes. , 2001, Genome research.

[37]  M. Manzanares,et al.  Modularity and reshuffling of Snail and Slug expression during vertebrate evolution , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[38]  Richard Reinhardt,et al.  A degenerate ParaHox gene cluster in a degenerate vertebrate. , 2007, Molecular biology and evolution.

[39]  S. Kuraku,et al.  Development of the adenohypophysis in the lamprey: evolution of epigenetic patterning programs in organogenesis. , 2003, Journal of experimental zoology. Part B, Molecular and developmental evolution.

[40]  J. Sullivan,et al.  28S and 18S rDNA sequences support the monophyly of lampreys and hagfishes. , 1998, Molecular biology and evolution.

[41]  J. Felsenstein Inferring phylogenies from protein sequences by parsimony, distance, and likelihood methods. , 1996, Methods in enzymology.

[42]  H. Philippe,et al.  Ancient phylogenetic relationships. , 2002, Theoretical population biology.

[43]  T. Sicheritz-Pontén,et al.  A phylogenomic approach to microbial evolution. , 2001, Nucleic acids research.

[44]  J. Felsenstein Cases in which Parsimony or Compatibility Methods will be Positively Misleading , 1978 .

[45]  P. Ahlberg Major Events in Early Vertebrate Evolution , 2001 .

[46]  Frédéric Delsuc,et al.  Heterotachy and long-branch attraction in phylogenetics , 2005, BMC Evolutionary Biology.

[47]  Shigehiro Kuraku,et al.  Hagfish embryology with reference to the evolution of the neural crest , 2007, Nature.

[48]  M. Holder,et al.  Phylogeny estimation: traditional and Bayesian approaches , 2003, Nature Reviews Genetics.

[49]  '. ANNAc.SHARMAN,et al.  Estimation of Hox gene cluster number in lampreys , 2006 .

[50]  M. Kasahara,et al.  The 2R hypothesis: an update. , 2007, Current opinion in immunology.

[51]  S. Rétaux,et al.  The lamprey in evolutionary studies , 2008, Development Genes and Evolution.

[52]  W. Fitch Homology a personal view on some of the problems. , 2000, Trends in genetics : TIG.

[53]  Justin Johnson,et al.  Survey Sequencing and Comparative Analysis of the Elephant Shark (Callorhinchus milii) Genome , 2007, PLoS biology.

[54]  I. Potter,et al.  The mitotic chromosomes of the lamprey,Petromyzon marinus L. , 1970, Experientia.

[55]  J. Klein,et al.  Molecular phylogeny of early vertebrates: monophyly of the agnathans as revealed by sequences of 35 genes. , 2003, Molecular biology and evolution.

[56]  Angel Amores,et al.  Hox cluster organization in the jawless vertebrate Petromyzon marinus. , 2002, The Journal of experimental zoology.

[57]  B. Koop,et al.  Bursts and horizontal evolution of DNA transposons in the speciation of pseudotetraploid salmonids , 2007, BMC Genomics.

[58]  Edwin H. Colbert,et al.  Evolution of the Vertebrates , 1955 .

[59]  M. Bronner‐Fraser,et al.  Conservation and divergence of BMP2/4 genes in the lamprey: expression and phylogenetic analysis suggest a single ancestral vertebrate gene , 2004, Evolution & development.

[60]  I. Ruvinsky,et al.  Phylogenetic analyses alone are insufficient to determine whether genome duplication(s) occurred during early vertebrate evolution. , 2003, Journal of experimental zoology. Part B, Molecular and developmental evolution.

[61]  S. Hedges Molecular evidence for the early history of living vertebrates , 2001 .

[62]  P. Lio’,et al.  Molecular phylogenetics: state-of-the-art methods for looking into the past. , 2001, Trends in genetics : TIG.

[63]  W. Fitch Distinguishing homologous from analogous proteins. , 1970, Systematic zoology.

[64]  G. S. Whitt,et al.  Evidence from 18S ribosomal RNA sequences that lampreys and hagfishes form a natural group. , 1992, Science.

[65]  Philip C J Donoghue,et al.  Genome duplication, extinction and vertebrate evolution. , 2005, Trends in ecology & evolution.

[66]  P. Janvier,et al.  Complete mitochondrial DNA of the hagfish, Eptatretus burgeri: the comparative analysis of mitochondrial DNA sequences strongly supports the cyclostome monophyly. , 2002, Molecular phylogenetics and evolution.

[67]  S. Hedges,et al.  Molecular phylogeny and divergence times of deuterostome animals. , 2005, Molecular biology and evolution.

[68]  Sonja J. Prohaska,et al.  Evidence for independent Hox gene duplications in the hagfish lineage: a PCR-based gene inventory of Eptatretus stoutii. , 2004, Molecular phylogenetics and evolution.

[69]  S. Brenner,et al.  Elephant shark sequence reveals unique insights into the evolutionary history of vertebrate genes: A comparative analysis of the protocadherin cluster , 2008, Proceedings of the National Academy of Sciences.

[70]  Sonja J. Prohaska,et al.  Independent Hox-cluster duplications in lampreys. , 2003, Journal of experimental zoology. Part B, Molecular and developmental evolution.

[71]  Philip C. J. Donoghue,et al.  MicroRNAs and the advent of vertebrate morphological complexity , 2008, Proceedings of the National Academy of Sciences.

[72]  I. Potter,et al.  The nuclear DNA content of lampreys , 1975, Experientia.

[73]  T. Lamb,et al.  Evolution of the vertebrate eye: opsins, photoreceptors, retina and eye cup , 2007, Nature Reviews Neuroscience.

[74]  C. Duméril,et al.  Zoologie analytique, ou méthode naturelle de classification des animaux, rendue plus facile a l'aide de tableaux synoptiques , 1803 .