Van der Waals epitaxial growth and optoelectronics of large-scale WSe2/SnS2 vertical bilayer p–n junctions

High-quality two-dimensional atomic layered p–n heterostructures are essential for high-performance integrated optoelectronics. The studies to date have been largely limited to exfoliated and restacked flakes, and the controlled growth of such heterostructures remains a significant challenge. Here we report the direct van der Waals epitaxial growth of large-scale WSe2/SnS2 vertical bilayer p–n junctions on SiO2/Si substrates, with the lateral sizes reaching up to millimeter scale. Multi-electrode field-effect transistors have been integrated on a single heterostructure bilayer. Electrical transport measurements indicate that the field-effect transistors of the junction show an ultra-low off-state leakage current of 10−14 A and a highest on–off ratio of up to 107. Optoelectronic characterizations show prominent photoresponse, with a fast response time of 500 μs, faster than all the directly grown vertical 2D heterostructures. The direct growth of high-quality van der Waals junctions marks an important step toward high-performance integrated optoelectronic devices and systems.Growth of large area and defect-free two-dimensional semiconductor layers for high-performance p–n junction applications has been a great challenge. Yang et al. prepare millimeter-scaled WSe2/SnS2 vertical heterojunctions by two-step van der Waals epitaxy, which show excellent optoelectronic properties.

[1]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[2]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[3]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[4]  Andre K. Geim,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[5]  P. Kim,et al.  Experimental observation of the quantum Hall effect and Berry's phase in graphene , 2005, Nature.

[6]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[7]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[8]  Kang L. Wang,et al.  High-speed graphene transistors with a self-aligned nanowire gate , 2010, Nature.

[9]  D. Bowler,et al.  Van der Waals density functionals applied to solids , 2011, 1102.1358.

[10]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[11]  Wang Yao,et al.  Valley polarization in MoS2 monolayers by optical pumping. , 2012, Nature nanotechnology.

[12]  Wang Yao,et al.  Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. , 2011, Physical review letters.

[13]  Lain-Jong Li,et al.  Large-Area Aiming Synthesis of WSe2 Monolayers , 2013, 1304.7365.

[14]  Yu Zhang,et al.  Controlled growth of high-quality monolayer WS2 layers on sapphire and imaging its grain boundary. , 2013, ACS nano.

[15]  Andras Kis,et al.  Ultrasensitive photodetectors based on monolayer MoS2. , 2013, Nature nanotechnology.

[16]  Janna Börner,et al.  Real-time imaging of methane gas leaks using a single-pixel camera. , 2017, Optics express.

[17]  Yu Huang,et al.  Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters , 2012, Nature materials.

[18]  Arindam Ghosh,et al.  Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices. , 2013, Nature nanotechnology.

[19]  Ke Xu,et al.  High-responsivity graphene/silicon-heterostructure waveguide photodetectors , 2013, Nature Photonics.

[20]  Jian Zhou,et al.  Band offsets and heterostructures of two-dimensional semiconductors , 2013 .

[21]  X. Duan,et al.  Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. , 2013, Nature nanotechnology.

[22]  M. Dresselhaus,et al.  Synthesis and transfer of single-layer transition metal disulfides on diverse surfaces. , 2013, Nano letters.

[23]  Sefaattin Tongay,et al.  Ultrafast charge transfer in atomically thin MoS₂/WS₂ heterostructures. , 2014, Nature nanotechnology.

[24]  Fei Meng,et al.  Vertical heterostructures of layered metal chalcogenides by van der Waals epitaxy. , 2014, Nano letters.

[25]  X. Duan,et al.  Electroluminescence and Photocurrent Generation from Atomically Sharp WSe2/MoS2 Heterojunction p–n Diodes , 2014, Nano letters.

[26]  Wei Chen,et al.  Role of metal contacts in high-performance phototransistors based on WSe2 monolayers. , 2014, ACS nano.

[27]  F. Libisch,et al.  Photovoltaic Effect in an Electrically Tunable van der Waals Heterojunction , 2014, Nano letters.

[28]  Sefaattin Tongay,et al.  Tuning interlayer coupling in large-area heterostructures with CVD-grown MoS2 and WS2 monolayers. , 2014, Nano letters.

[29]  Jun Lou,et al.  Vertical and in-plane heterostructures from WS2/MoS2 monolayers. , 2014, Nature materials.

[30]  Yu Huang,et al.  Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. , 2014, Nature nanotechnology.

[31]  Lain‐Jong Li,et al.  Large-area synthesis of highly crystalline WSe(2) monolayers and device applications. , 2014, ACS nano.

[32]  Determination of band alignment in the single-layer MoS2/WSe2 heterojunction , 2014, Nature communications.

[33]  Arka Majumdar,et al.  Monolayer semiconductor nanocavity lasers with ultralow thresholds , 2015, Nature.

[34]  H. Jeong,et al.  Chemical Vapor Deposition of Large‐Sized Hexagonal WSe2 Crystals on Dielectric Substrates , 2015, Advanced materials.

[35]  Moon J. Kim,et al.  Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures , 2015, Nature Communications.

[36]  D. Muller,et al.  Esaki Diodes in van der Waals Heterojunctions with Broken-Gap Energy Band Alignment. , 2015, Nano letters.

[37]  Bumsu Lee,et al.  Fano Resonance and Spectrally Modified Photoluminescence Enhancement in Monolayer MoS2 Integrated with Plasmonic Nanoantenna Array. , 2015, Nano letters.

[38]  P. Ajayan,et al.  Two-Step Growth of Two-Dimensional WSe2/MoSe2 Heterostructures. , 2015, Nano letters.

[39]  Zhongming Wei,et al.  Tunable Polarity Behavior and Self-Driven Photoswitching in p-WSe₂/n-WS₂ Heterojunctions. , 2015, Small.

[40]  Lei Wang,et al.  Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. , 2015, Nature nanotechnology.

[41]  Jing Guo,et al.  Dual-gated MoS2/WSe2 van der Waals tunnel diodes and transistors. , 2015, ACS nano.

[42]  X. Duan,et al.  Large Area Growth and Electrical Properties of p-Type WSe2 Atomic Layers , 2014, Nano letters.

[43]  Timothy C. Berkelbach,et al.  Observation of biexcitons in monolayer WSe2 , 2015, Nature Physics.

[44]  Yi Liu,et al.  Equally efficient interlayer exciton relaxation and improved absorption in epitaxial and nonepitaxial MoS2/WS2 heterostructures. , 2014, Nano letters.

[45]  Yan Liu,et al.  Scalable Production of a Few-Layer MoS2/WS2 Vertical Heterojunction Array and Its Application for Photodetectors. , 2016, ACS nano.

[46]  M. Dresselhaus,et al.  Transport Properties of a MoS2/WSe2 Heterojunction Transistor and Its Potential for Application. , 2016, Nano letters.

[47]  J. Grossman,et al.  Self-Driven Photodetector and Ambipolar Transistor in Atomically Thin GaTe-MoS2 p-n vdW Heterostructure. , 2016, ACS applied materials & interfaces.

[48]  P. Ajayan,et al.  Strain-Induced Electronic Structure Changes in Stacked van der Waals Heterostructures. , 2016, Nano letters.

[49]  Picosecond photoresponse in van der Waals heterostructures. , 2015, Nature nanotechnology.

[50]  Miaofang Chi,et al.  Two-dimensional GaSe/MoSe2 misfit bilayer heterojunctions by van der Waals epitaxy , 2016, Science Advances.

[51]  Sungjoo Lee,et al.  Phosphorene/rhenium disulfide heterojunction-based negative differential resistance device for multi-valued logic , 2016, Nature Communications.

[52]  S. Im,et al.  Electric and Photovoltaic Behavior of a Few‐Layer α‐MoTe2/MoS2 Dichalcogenide Heterojunction , 2016, Advanced materials.

[53]  A. Pan,et al.  High on/off ratio photosensitive field effect transistors based on few layer SnS2 , 2016, Nanotechnology.

[54]  A. Wee,et al.  Van der Waals stacked 2D layered materials for optoelectronics , 2016 .

[55]  R. Yu,et al.  Synthesis of WS2xSe2-2x Alloy Nanosheets with Composition-Tunable Electronic Properties. , 2016, Nano letters.

[56]  T. Zhai,et al.  Large‐Size Growth of Ultrathin SnS2 Nanosheets and High Performance for Phototransistors , 2016 .

[57]  I. Oleynik,et al.  Layer-dependent properties of SnS2 and SnSe2 novel two-dimensional materials , 2016, 1609.04381.

[58]  Yang‐Kook Sun,et al.  Direct Growth of MoS₂/h-BN Heterostructures via a Sulfide-Resistant Alloy. , 2016, ACS nano.

[59]  Wei Lu,et al.  Visible Light-Assisted High-Performance Mid-Infrared Photodetectors Based on Single InAs Nanowire. , 2016, Nano letters.

[60]  L. Gu,et al.  Temperature‐Mediated Selective Growth of MoS2/WS2 and WS2/MoS2 Vertical Stacks on Au Foils for Direct Photocatalytic Applications , 2016, Advanced materials.

[61]  Yan Li,et al.  Direct Vapor Phase Growth and Optoelectronic Application of Large Band Offset SnS2/MoS2 Vertical Bilayer Heterostructures with High Lattice Mismatch , 2016 .

[62]  M. Joseph,et al.  Layer-dependent properties of SnS2 and SnSe2 two-dimensional materials , 2016 .

[63]  Jinlan Wang,et al.  Precise, Self-Limited Epitaxy of Ultrathin Organic Semiconductors and Heterojunctions Tailored by van der Waals Interactions. , 2016, Nano letters.

[64]  Ning Dai,et al.  Interlayer Transition and Infrared Photodetection in Atomically Thin Type-II MoTe₂/MoS₂ van der Waals Heterostructures. , 2016, ACS nano.

[65]  Aron Walsh,et al.  Electronic and optical properties of single crystal SnS2: an earth-abundant disulfide photocatalyst , 2016, Journal of Materials Chemistry A.

[66]  Yan Wang,et al.  Photoresponsive field-effect transistors based on multilayer SnS2 nanosheets , 2017 .

[67]  J. Lü,et al.  Vertical heterostructures based on SnSe2/MoS2 for high performance photodetectors , 2017 .

[68]  M. Chou,et al.  Interlayer couplings, Moiré patterns, and 2D electronic superlattices in MoS2/WSe2 hetero-bilayers , 2017, Science Advances.

[69]  Wei Lu,et al.  Arrayed Van Der Waals Broadband Detectors for Dual‐Band Detection , 2017, Advanced materials.

[70]  Yan Wang,et al.  Light induced double ‘on’ state anti-ambipolar behavior and self-driven photoswitching in p-WSe2/n-SnS2 heterostructures , 2017 .

[71]  X. Duan,et al.  Broken Symmetry Induced Strong Nonlinear Optical Effects in Spiral WS2 Nanosheets. , 2017, ACS nano.

[72]  Hai-Zhou Lu,et al.  Tunable Positive to Negative Magnetoresistance in Atomically Thin WTe2. , 2017, Nano letters.

[73]  X. Duan,et al.  Composition-Modulated Two-Dimensional Semiconductor Lateral Heterostructures via Layer-Selected Atomic Substitution. , 2017, ACS nano.

[74]  Lain‐Jong Li,et al.  Band Alignment of 2D Transition Metal Dichalcogenide Heterojunctions , 2017 .

[75]  Interlayer Exciton Optoelectronics in a 2D Heterostructure p-n Junction. , 2017, Nano letters.