Fault diagnosis in chemical processes using Fisher discriminant analysis, discriminant partial least squares, and principal component analysis

[1]  Gang Chen,et al.  Predictive on-line monitoring of continuous processes , 1998 .

[2]  D. Kell,et al.  Classification of pyrolysis mass spectra by fuzzy multivariate rule induction-comparison with regression, K-nearest neighbour, neural and decision-tree methods , 1997 .

[3]  Joop L. M. Hermens,et al.  Classification of environmentally occurring chemicals using structural fragments and PLS discriminant analysis , 1997 .

[4]  E. K. Kemsley,et al.  THE USE AND MISUSE OF CHEMOMETRICS FOR TREATING CLASSIFICATION PROBLEMS , 1997 .

[5]  Thomas F. Edgar,et al.  Identification of faulty sensors using principal component analysis , 1996 .

[6]  E. K. Kemsley,et al.  Discriminant analysis of high-dimensional data: a comparison of principal components analysis and partial least squares data reduction methods , 1996 .

[7]  Ali Cinar,et al.  Statistical process monitoring and disturbance diagnosis in multivariable continuous processes , 1996 .

[8]  Christos Georgakis,et al.  Disturbance detection and isolation by dynamic principal component analysis , 1995 .

[9]  Ali Cinar,et al.  Multivariate statistical methods for monitoring continuous processes: assessment of discrimination power of disturbance models and diagnosis of multiple disturbances , 1995 .

[10]  Hongwei Tong,et al.  Detection of gross erros in data reconciliation by principal component analysis , 1995 .

[11]  Barry M. Wise,et al.  The process chemometrics approach to process monitoring and fault detection , 1995 .

[12]  Christos Georgakis,et al.  Plant-wide control of the Tennessee Eastman problem , 1995 .

[13]  K. A. Kosanovich,et al.  Applications of multivariate statistical methods to process monitoring and controller design , 1994 .

[14]  E. F. Vogel,et al.  A plant-wide industrial process control problem , 1993 .

[15]  W. Harmon Ray,et al.  Chemometric methods for process monitoring and high‐performance controller design , 1992 .

[16]  Jing-Yu Yang,et al.  Optimal fisher discriminant analysis using the rank decomposition , 1992, Pattern Recognit..

[17]  J. Edward Jackson,et al.  A User's Guide to Principal Components. , 1991 .

[18]  Jing-Yu Yang,et al.  Optimal discriminant plane for a small number of samples and design method of classifier on the plane , 1991, Pattern Recognit..

[19]  Thomas E. Marlin,et al.  Multivariate statistical monitoring of process operating performance , 1991 .

[20]  B. M. Wise,et al.  UPSET AND SENSOR FAILURE DETECTION IN MULTIVARIATE PROCESSES , 1989 .

[21]  Q. Tian,et al.  Comparison of statistical pattern-recognition algorithms for hybrid processing. II: Eigenvector-based algorithm , 1988 .

[22]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[23]  W. Velicer,et al.  Comparison of five rules for determining the number of components to retain. , 1986 .

[24]  B. Kowalski,et al.  Partial least-squares regression: a tutorial , 1986 .

[25]  G. Golub Matrix computations , 1983 .

[26]  Robert F. Ling,et al.  Classification and Clustering. , 1979 .

[27]  J. E. Jackson,et al.  Control Procedures for Residuals Associated With Principal Component Analysis , 1979 .

[28]  S. Wold Cross-Validatory Estimation of the Number of Components in Factor and Principal Components Models , 1978 .

[29]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.