Radial Basis Functions

The traditional basis functions in numerical PDEs are mostly coordinate functions, such as polynomial and trigonometric functions, which are computationally expensive in dealing with high dimensional problems due to their dependency on geometric complexity. Alternatively, radial basis functions (RBFs) are constructed in terms of one-dimensional distance variable irrespective of dimensionality of problems and appear to have a clear edge over the traditional basis functions directly in terms of coordinates. In the first part of this chapter, we introduces classical RBFs, such as globally-supported RBFs (Polyharmonic splines, Multiquadratics, Gaussian, etc.), and recently developed RBFs, such as compactly-supported RBFs. Following this, several problem-dependent RBFs, such as fundamental solutions, general solutions, harmonic functions, and particular solutions, are presented. Based on the second Green identity, we propose the kernel RBF-creating strategy to construct the appropriate RBFs.

[1]  Donato Posa,et al.  Space-time radial basis functions , 2002 .

[2]  Bangti Jin,et al.  Boundary knot method based on geodesic distance for anisotropic problems , 2006, J. Comput. Phys..

[3]  M. Buhmann Radial functions on compact support , 1998 .

[4]  W. Chen,et al.  New RBF collocation methods and kernel RBF with applications , 2001, ArXiv.

[5]  Guirong Liu,et al.  On the optimal shape parameters of radial basis functions used for 2-D meshless methods , 2002 .

[6]  Wing Kam Liu,et al.  Multiple‐scale reproducing kernel particle methods for large deformation problems , 1998 .

[7]  Alexander H.-D. Cheng,et al.  Particular solutions of splines and monomials for polyharmonic and products of Helmholtz operators , 2009 .

[8]  C.M.C. Roque,et al.  Numerical experiments on optimal shape parameters for radial basis functions , 2009 .

[9]  Wen Chen,et al.  New Insights in Boundary-only and Domain-type RBF Methods , 2002, ArXiv.

[10]  S. G. Ahmed,et al.  A collocation method using new combined radial basis functions of thin plate and multiquadraic types , 2006 .

[11]  E. Kansa,et al.  Exponential convergence and H‐c multiquadric collocation method for partial differential equations , 2003 .

[12]  Y. Hon,et al.  A numerical computation for inverse boundary determination problem , 2000 .

[13]  Zhijun Shen,et al.  General solutions and fundamental solutions of varied orders to the vibrational thin, the Berger, and the Winkler plates , 2005 .

[14]  P. W. Partridge,et al.  The dual reciprocity boundary element method , 1991 .

[15]  Zongmin Wu,et al.  Compactly supported positive definite radial functions , 1995 .

[16]  C. S. Chen,et al.  Particular solutions of Helmholtz-type operators using higher order polyhrmonic splines , 1999 .

[17]  Zongmin Wu,et al.  Local error estimates for radial basis function interpolation of scattered data , 1993 .

[18]  R. E. Carlson,et al.  Interpolation of track data with radial basis methods , 1992 .

[19]  Holger Wendland,et al.  Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree , 1995, Adv. Comput. Math..

[20]  A. Cheng Particular solutions of Laplacian, Helmholtz-type, and polyharmonic operators involving higher order radial basis functions , 2000 .

[21]  Jean Duchon,et al.  Interpolation des fonctions de deux variables suivant le principe de la flexion des plaques minces , 1976 .

[22]  Bangti Jin,et al.  A truly boundary-only meshfree method for inhomogeneous problems based on recursive composite multiple reciprocity technique , 2010 .

[23]  A. Cheng,et al.  Error estimate, optimal shape factor, and high precision computation of multiquadric collocation method , 2007 .

[24]  D. L. Young,et al.  Time-dependent fundamental solutions for homogeneous diffusion problems , 2004 .

[25]  M. Golberg,et al.  Particular solutions of the multi-Helmholtz-type equation , 2007 .

[26]  W. Madych,et al.  Bounds on multivariate polynomials and exponential error estimates for multiquadratic interpolation , 1992 .

[27]  Bengt Fornberg,et al.  On choosing a radial basis function and a shape parameter when solving a convective PDE on a sphere , 2008, J. Comput. Phys..

[28]  Mohammad Shekarchi,et al.  Wavelet Based Adaptive RBF Method for Nearly Singular Poisson-Type Problems on Irregular Domains , 2009 .

[29]  Masafumi Itagaki,et al.  Higher order three-dimensional fundamental solutions to the Helmholtz and the modified Helmholtz equations , 1995 .

[30]  Elisabeth Larsson,et al.  A new class of oscillatory radial basis functions , 2006, Comput. Math. Appl..

[31]  R. Franke Scattered data interpolation: tests of some methods , 1982 .

[32]  Wen Chen Meshfree boundary particle method applied to Helmholtz problems , 2002 .

[33]  Ji Lin,et al.  A new radial basis function for Helmholtz problems , 2012 .

[34]  A. Cheng Multiquadric and its shape parameter—A numerical investigation of error estimate, condition number, and round-off error by arbitrary precision computation , 2012 .

[35]  Zhijun Shen,et al.  Boundary knot method for Poisson equations , 2005 .

[36]  Martin D. Buhmann,et al.  Radial Basis Functions: Theory and Implementations: Radial basis function approximation on infinite grids , 2003 .

[37]  W. R. Madych,et al.  Miscellaneous error bounds for multiquadric and related interpolators , 1992 .

[38]  E. Kansa MULTIQUADRICS--A SCATTERED DATA APPROXIMATION SCHEME WITH APPLICATIONS TO COMPUTATIONAL FLUID-DYNAMICS-- II SOLUTIONS TO PARABOLIC, HYPERBOLIC AND ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS , 1990 .

[39]  A. Nowak,et al.  The Multiple reciprocity boundary element method , 1994 .

[40]  Ching-Shyang Chen,et al.  Evaluation of thin plate spline based particular solutions for Helmholtz-type operators for the DRM , 1998 .

[41]  G. Yao,et al.  Local radial basis function methods for solving partial differential equations , 2010 .

[42]  D. L. Young,et al.  MFS with time-dependent fundamental solutions for unsteady Stokes equations , 2006 .

[43]  Holger Wendland,et al.  Scattered Data Approximation: Conditionally positive definite functions , 2004 .

[44]  W. Madych,et al.  Multivariate interpolation and condi-tionally positive definite functions , 1988 .

[45]  K. Atkinson The Numerical Evaluation of Particular Solutions for Poisson's Equation , 1985 .

[46]  W. Chen,et al.  A meshless, integration-free, and boundary-only RBF technique , 2002, ArXiv.

[47]  Yui-Chuin Shiah,et al.  BEM treatment of three-dimensional anisotropic field problems by direct domain mapping , 1997 .