Optimal moment determination in POME-copula based hydrometeorological dependence modelling

Abstract Copula has been commonly applied in multivariate modelling in various fields where marginal distribution inference is a key element. To develop a flexible, unbiased mathematical inference framework in hydrometeorological multivariate applications, the principle of maximum entropy (POME) is being increasingly coupled with copula. However, in previous POME-based studies, determination of optimal moment constraints has generally not been considered. The main contribution of this study is the determination of optimal moments for POME for developing a coupled optimal moment-POME-copula framework to model hydrometeorological multivariate events. In this framework, margins (marginals, or marginal distributions) are derived with the use of POME, subject to optimal moment constraints. Then, various candidate copulas are constructed according to the derived margins, and finally the most probable one is determined, based on goodness-of-fit statistics. This optimal moment-POME-copula framework is applied to model the dependence patterns of three types of hydrometeorological events: (i) single-site streamflow-water level; (ii) multi-site streamflow; and (iii) multi-site precipitation, with data collected from Yichang and Hankou in the Yangtze River basin, China. Results indicate that the optimal-moment POME is more accurate in margin fitting and the corresponding copulas reflect a good statistical performance in correlation simulation. Also, the derived copulas, capturing more patterns which traditional correlation coefficients cannot reflect, provide an efficient way in other applied scenarios concerning hydrometeorological multivariate modelling.

[1]  V. Singh,et al.  Impact of Data Length on the Uncertainty of Hydrological Copula Modeling , 2015 .

[2]  Phil Howlett,et al.  Matching the grade correlation coefficient using a copula with maximum disorder , 2007 .

[3]  A. Daneshkhah,et al.  Probabilistic modeling of flood characterizations with parametric and minimum information pair-copula model , 2016 .

[4]  L. Gottschalk,et al.  Derivation of low flow distribution functions using copulas , 2014 .

[5]  S. Satchell,et al.  Recovering the Most Entropic Copulas from Preliminary Knowledge of Dependence , 2016 .

[6]  A. Aghakouchak,et al.  Global warming and changes in risk of concurrent climate extremes: Insights from the 2014 California drought , 2014 .

[7]  Z. Hao,et al.  Entropy‐copula method for single‐site monthly streamflow simulation , 2012 .

[8]  Xiaohong Chen,et al.  Copula-based risk evaluation of hydrological droughts in the East River basin, China , 2013, Stochastic Environmental Research and Risk Assessment.

[9]  Niko E. C. Verhoest,et al.  A comparative copula‐based bivariate frequency analysis of observed and simulated storm events: A case study on Bartlett‐Lewis modeled rainfall , 2011 .

[10]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[11]  Aristidis K. Nikoloulopoulos Efficient estimation of high-dimensional multivariate normal copula models with discrete spatial responses , 2014, Stochastic Environmental Research and Risk Assessment.

[12]  Amir AghaKouchak,et al.  Entropy–Copula in Hydrology and Climatology , 2014 .

[13]  Vijay P. Singh,et al.  Entropy-Based Parameter Estimation In Hydrology , 1998 .

[14]  Subimal Ghosh,et al.  Modelling bivariate rainfall distribution and generating bivariate correlated rainfall data in neighbouring meteorological subdivisions using copula , 2010 .

[15]  Shenglian Guo,et al.  Bivariate Flood Frequency Analysis with Historical Information Based on Copula , 2013 .

[16]  B. Renard,et al.  Use of a Gaussian copula for multivariate extreme value analysis: Some case studies in hydrology , 2007 .

[17]  Vijay P. Singh,et al.  IDF Curves Using the Frank Archimedean Copula , 2007 .

[18]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .

[19]  Jonathan M. Borwein,et al.  Maximum entropy methods for generating simulated rainfall , 2012 .

[20]  Fabrizio Durante,et al.  Multivariate return period calculation via survival functions , 2013 .

[21]  H. Joe Asymptotic efficiency of the two-stage estimation method for copula-based models , 2005 .

[22]  A. Favre,et al.  Metaelliptical copulas and their use in frequency analysis of multivariate hydrological data , 2007 .

[23]  E. Habib,et al.  Estimation of tail dependence coefficient in rainfall accumulation fields , 2009 .

[24]  C. Genest,et al.  Everything You Always Wanted to Know about Copula Modeling but Were Afraid to Ask , 2007 .

[25]  S. Yue,et al.  A review of bivariate gamma distributions for hydrological application , 2001 .

[26]  Aldo Fiori,et al.  Design event selection in bivariate hydrological frequency analysis , 2012 .

[27]  Barry A. Palynchuk,et al.  A probabilistic description of rain storms incorporating peak intensities , 2011 .

[28]  Chao Ma,et al.  Joint impact of rainfall and tidal level on flood risk in a coastal city with a complex river network: a case study of Fuzhou City, China , 2012 .

[29]  T. Louis,et al.  Inferences on the association parameter in copula models for bivariate survival data. , 1995, Biometrics.

[30]  Ali Mohammad-Djafari,et al.  Link between copula and tomography , 2010, Pattern Recognit. Lett..

[31]  R. Nelsen An Introduction to Copulas , 1998 .

[32]  C. De Michele,et al.  Multivariate multiparameter extreme value models and return periods: A copula approach , 2010 .

[33]  P. T. Adamson,et al.  Bivariate extreme value distributions: an application of the Gibbs Sampler to the analysis of floods , 1999 .

[34]  V. Singh,et al.  Monthly river flow simulation with a joint conditional density estimation network , 2013 .

[35]  Vijay P. Singh,et al.  Integrating Entropy and Copula Theories for Hydrologic Modeling and Analysis , 2015, Entropy.

[36]  Fateh Chebana,et al.  Exploratory functional flood frequency analysis and outlier detection , 2012 .

[37]  Stephan Morgenthaler,et al.  Two‐site modeling of rainfall based on the Neyman‐Scott process , 2002 .

[38]  Vijay P. Singh,et al.  A copula‐based precipitation forecasting model: Investigating the interdecadal modulation of ENSO's impacts on monthly precipitation , 2014 .

[39]  Michael A. H. Dempster,et al.  EMPIRICAL COPULAS FOR CDO TRANCHE PRICING USING RELATIVE ENTROPY , 2007 .

[40]  A. Mohammad-Djafari,et al.  New copulas obtained by maximizing Tsallis or Rényi entropies , 2012 .

[41]  Claude E. Shannon,et al.  The mathematical theory of communication , 1950 .

[42]  M. Sklar Fonctions de repartition a n dimensions et leurs marges , 1959 .

[43]  Alexander J. McNeil,et al.  Likelihood inference for Archimedean copulas in high dimensions under known margins , 2012, J. Multivar. Anal..

[44]  Jonathan M. Borwein,et al.  Copulas with maximum entropy , 2012, Optim. Lett..

[45]  Dong Wang,et al.  POME-copula for hydrological dependence analysis , 2015 .

[46]  Xiangyu Xu,et al.  Copula based drought frequency analysis considering the spatio-temporal variability in Southwest China , 2015 .

[47]  Richard A. Johnson,et al.  Applied Multivariate Statistical Analysis , 1983 .

[48]  B. Bobée,et al.  Multivariate hydrological frequency analysis using copulas , 2004 .

[49]  Jerome L. Myers,et al.  Research Design and Statistical Analysis , 1991 .

[50]  Ali Mohammad-Djafari,et al.  Maximum Entropies Copulas , 2011 .

[51]  Gunky Kim,et al.  Comparison of semiparametric and parametric methods for estimating copulas , 2007, Comput. Stat. Data Anal..

[52]  C. Michele,et al.  Multivariate real-time assessment of droughts via copula-based multi-site Hazard Trajectories and Fans , 2015 .

[53]  Carlo De Michele,et al.  Extremes in Nature : an approach using Copulas , 2007 .

[54]  J. N. Kapur,et al.  Entropy Optimization Principles and Their Applications , 1992 .

[55]  C. De Michele,et al.  On the Use of Copulas in Hydrology: Theory and Practice , 2007 .

[56]  Ba Chu,et al.  Recovering copulas from limited information and an application to asset allocation , 2011 .

[57]  T. W. Anderson An Introduction to Multivariate Statistical Analysis , 1959 .

[58]  C. De Michele,et al.  A Generalized Pareto intensity‐duration model of storm rainfall exploiting 2‐Copulas , 2003 .

[59]  E. Parzen On Estimation of a Probability Density Function and Mode , 1962 .

[60]  C. Genest,et al.  A semiparametric estimation procedure of dependence parameters in multivariate families of distributions , 1995 .

[61]  Lan Zhang,et al.  Bivariate Rainfall and Runoff Analysis Using Entropy and Copula Theories , 2012, Entropy.

[62]  A. Frigessi,et al.  How well do regional climate models simulate the spatial dependence of precipitation? An application of pair‐copula constructions , 2015 .

[63]  H. Joe Dependence Modeling with Copulas , 2014 .

[64]  M. Kendall Rank Correlation Methods , 1949 .

[65]  Guangtao Fu,et al.  Copula-based frequency analysis of overflow and flooding in urban drainage systems , 2014 .

[66]  M. Rosenblatt Remarks on a Multivariate Transformation , 1952 .

[67]  Jian-xia Chang,et al.  Copula-based drought risk assessment combined with an integrated index in the Wei River Basin, China , 2016 .

[68]  Vijay P. Singh,et al.  Derivation of bivariate probability density functions with exponential marginals , 1991 .

[69]  Vijay P. Singh,et al.  Evaluation of risk of hydrological droughts by the trivariate Plackett copula in the East River basin (China) , 2013, Natural Hazards.