Oxidation of multiple methionine residues impairs rapid sodium channel inactivation

[1]  G. Gintant,et al.  Functional consequences of methionine oxidation of hERG potassium channels. , 2007, Biochemical pharmacology.

[2]  Bulbul Chakravarti,et al.  Oxidative Modification of Proteins: Age-Related Changes , 2006, Gerontology.

[3]  R. Kloner,et al.  Ranolazine, an Inhibitor of the Late Sodium Channel Current, Reduces Postischemic Myocardial Dysfunction in the Rabbit , 2006, Journal of cardiovascular pharmacology and therapeutics.

[4]  L. Maier,et al.  Blocking Late Sodium Current Reduces Hydrogen Peroxide-Induced Arrhythmogenic Activity and Contractile Dysfunction , 2006, Journal of Pharmacology and Experimental Therapeutics.

[5]  S. Heinemann,et al.  Three methionine residues located within the regulator of conductance for K+ (RCK) domains confer oxidative sensitivity to large‐conductance Ca2+‐activated K+ channels , 2006, The Journal of physiology.

[6]  L. Kevin,et al.  Reactive Oxygen Species as Mediators of Cardiac Injury and Protection: The Relevance to Anesthesia Practice , 2005, Anesthesia and analgesia.

[7]  Pei-hua Zhang,et al.  Effect of hydrogen peroxide on persistent sodium current in guinea pig ventricular myocytes , 2005, Acta Pharmacologica Sinica.

[8]  T. Squier,et al.  Redox modulation of cellular signaling and metabolism through reversible oxidation of methionine sensors in calcium regulatory proteins. , 2005, Biochimica et biophysica acta.

[9]  S. Heinemann,et al.  Modification of C-type inactivatingShaker potassium channels by chloramine-T , 1996, Pflügers Archiv.

[10]  R. Kloner,et al.  Pathobiology and Clinical Impact of Reperfusion Injury , 2004, Journal of Thrombosis and Thrombolysis.

[11]  Keita Takeuchi,et al.  Lucifer Yellow Slows Voltage‐Gated Na+ Current Inactivation in a Light‐Dependent Manner in Mice , 2003, The Journal of physiology.

[12]  R. Gazmuri,et al.  Myocardial protection during resuscitation from cardiac arrest , 2003, Current opinion in critical care.

[13]  G. K. Wang,et al.  Modifications of Human Cardiac Sodium Channel Gating by UVA Light , 2002, The Journal of Membrane Biology.

[14]  S. Heinemann,et al.  Activity, tissue distribution and site‐directed mutagenesis of a human peptide methionine sulfoxide reductase of type B: hCBS1 , 2002, FEBS letters.

[15]  B. Matthews,et al.  Peptide methionine sulfoxide reductase: structure, mechanism of action, and biological function. , 2002, Archives of biochemistry and biophysics.

[16]  D. Burke,et al.  Sodium channel function and the excitability of human cutaneous afferents during ischaemia , 2002, The Journal of physiology.

[17]  N. Brot,et al.  Oxidative Regulation of Large Conductance Calcium-Activated Potassium Channels , 2001, The Journal of general physiology.

[18]  S. Heinemann,et al.  Regulation of cell function by methionine oxidation and reduction , 2001, The Journal of physiology.

[19]  S. Heinemann,et al.  Modulation of cloned skeletal muscle sodium channels by the scorpion toxins Lqh II, Lqh III, and LqhαIT , 2000, Pflügers Archiv.

[20]  N. Brot,et al.  Molecular cloning and functional expression of a human peptide methionine sulfoxide reductase (hMsrA) , 1999, FEBS letters.

[21]  M. Quinonez,et al.  Involvement of Methionine Residues in the Fast Inactivation Mechanism of the Sodium Current from Toad Skeletal Muscle Fibers , 1999, The Journal of Membrane Biology.

[22]  W. Catterall,et al.  Block of Brain Sodium Channels by Peptide Mimetics of the Isoleucine, Phenylalanine, and Methionine (IFM) Motif from the Inactivation Gate , 1999, The Journal of general physiology.

[23]  A. De Luca,et al.  Modification by ageing of the tetrodotoxin-sensitive sodium channels in rat skeletal muscle fibres. , 1998, Biochimica et biophysica acta.

[24]  W. Catterall,et al.  A Critical Role for the S4-S5 Intracellular Loop in Domain IV of the Sodium Channel α-Subunit in Fast Inactivation* , 1998, The Journal of Biological Chemistry.

[25]  N. Brot,et al.  Modulation of potassium channel function by methionine oxidation and reduction. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[26]  E. Stadtman,et al.  Methionine residues as endogenous antioxidants in proteins. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[27]  R. Horn,et al.  Role of an S4-S5 linker in sodium channel inactivation probed by mutagenesis and a peptide blocker , 1996, The Journal of general physiology.

[28]  N. Klugbauer,et al.  Structure and functional expression of a new member of the tetrodotoxin‐sensitive voltage‐activated sodium channel family from human neuroendocrine cells. , 1995, The EMBO journal.

[29]  W. Vogt Oxidation of methionyl residues in proteins: tools, targets, and reversal. , 1995, Free radical biology & medicine.

[30]  W. Catterall,et al.  Restoration of inactivation and block of open sodium channels by an inactivation gate peptide , 1994, Neuron.

[31]  E. Stadtman Protein oxidation and aging , 2006, Science.

[32]  R Horn,et al.  Primary structure and functional expression of the human cardiac tetrodotoxin-insensitive voltage-dependent sodium channel. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[33]  D. Mould,et al.  Development of hydrophobicity parameters to analyze proteins which bear post- or cotranslational modifications. , 1991, Analytical biochemistry.

[34]  J. Trimmer,et al.  Primary structure and functional expression of a mammalian skeletal muscle sodium channel , 1989, Neuron.

[35]  J. Yeh,et al.  Removal of sodium inactivation and block of sodium channels by chloramine-T in crayfish and squid giant axons. , 1987, Biophysical journal.

[36]  H. Takeshima,et al.  Expression of functional sodium channels from cloned cDNA , 1986, Nature.

[37]  D. Eaton,et al.  Removal of sodium channel inactivation in squid axon by the oxidant chloramine-T , 1985, The Journal of general physiology.

[38]  G. Wang Irreversible modification of sodium channel inactivation in toad myelinated nerve fibres by the oxidant chloramine‐T. , 1984, The Journal of physiology.