Recurrent extensions of self-similar Markov processes and Cramér’s condition II
暂无分享,去创建一个
[1] Last Exit Times and Additive Functionals , 1973 .
[2] Marc Yor,et al. The Entrance Laws of Self-Similar Markov Processes and Exponential Functionals of Lévy Processes , 2002 .
[3] R. Getoor,et al. Two Results on Dual Excursions , 1981 .
[4] M. Yor,et al. Sur les fonctionnelles exponentielles de certains processus de lévy , 1994 .
[5] Jean Bertoin,et al. Cramér's estimate for Lévy processes , 1994 .
[6] P. Fitzsimmons. On the Existence of Recurrent Extensions of Self-similar Markov Processes , 2006 .
[7] Ken-iti Sato. Lévy Processes and Infinitely Divisible Distributions , 1999 .
[8] R. Getoor,et al. Excursions of a Markov Process , 1979 .
[9] H. Kesten. Random difference equations and Renewal theory for products of random matrices , 1973 .
[10] C. Goldie. IMPLICIT RENEWAL THEORY AND TAILS OF SOLUTIONS OF RANDOM EQUATIONS , 1991 .
[11] Robert M. Blumenthal. Excursions of Markov Processes , 1991 .
[12] Hiroshi Tanaka. Time Reversal of Random Walks in One-Dimension , 1989 .
[13] H. Kaspi. On invariant measures and dual excursions of Markov processes , 1984 .
[14] Bert Zwart,et al. Tail asymptotics for exponential function-als of L evy processes , 2006 .
[15] M. Silverstein. Classification of Coharmonic and Coinvariant Functions for a Levy Process , 1980 .
[16] M. Caballero,et al. Entrance from 0+ for increasing semi-stable Markov processes , 2002 .
[17] P. Meyer,et al. Probabilités et potentiel , 1966 .
[18] M. Yor,et al. Exponential functionals of Levy processes , 2005, math/0511265.
[19] R. Blumenthal. On construction of Markov processes , 1983 .
[20] J. Imhof,et al. Density factorizations for brownian motion, meander and the three-dimensional bessel process, and applications , 1984, Journal of Applied Probability.
[21] H. McKean,et al. Excursions of a non-singular diffusion , 1963 .
[22] K. Bruce Erickson,et al. Strong renewal theorems with infinite mean , 1970 .
[23] J. Lamperti. Semi-stable Markov processes. I , 1972 .